Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 6, pp 913–921 | Cite as

Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin

  • C. Derrick QuarlesJr.
  • R. Kenneth Marcus
  • Julia L. Brumaghim
Original Paper

Abstract

Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two M n+ to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode–optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe3+ for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe3+ uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni2+ loading into Tf. Competitive binding kinetic studies were performed with Fe3+, Cr3+, and Ni2+ to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe3+ loading increased in the presence of nickel or chromium, with maximal Fe3+ loading into Tf in all cases reaching approximately 24%. Addition of Cr3+ to 50% preloaded Fe3+–Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe3+ from Tf, resulting in 7.6 ± 1.3% Cr3+ loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.

Keywords

Transferrin Competitive metal binding Iron Nickel Chromium 

Supplementary material

775_2011_792_MOESM1_ESM.pdf (130 kb)
Supplementary material (PDF 129 kb)

References

  1. 1.
    Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, pp 141–148Google Scholar
  2. 2.
    Chua ACG, Graham RM (2007) Crit Rev Clin Lab Sci 44:413–459PubMedCrossRefGoogle Scholar
  3. 3.
    Sun H, Cox MC, Li H, Sadler PJ (1997) Struct Bond 88:71–102Google Scholar
  4. 4.
    Rawas A, Moreton K, Muirhead H, Williams J (1989) J Mol Biol 208:213–214PubMedCrossRefGoogle Scholar
  5. 5.
    Aisen P, Leibman A, Zweier J (1978) Biol Chem 253:1930–1937Google Scholar
  6. 6.
    Grossman JG, Neu M, Evans RW, Lindley PF, Appel H, Hasnain SS (1993) J Mol Biol 229:585–590CrossRefGoogle Scholar
  7. 7.
    Dautry-Varsat A, Ciechano A, Lodish HF (1983) Proc Natl Acad Sci USA 80:2258–2262PubMedCrossRefGoogle Scholar
  8. 8.
    Sun H, Li H, Sadler PJ (1999) Chem Rev 99:2817–2842PubMedCrossRefGoogle Scholar
  9. 9.
    Huebers H, Josephson B, Huebers E, Csiba E, Finch C (1981) Proc Natl Acad Sci USA 78:2572–2576PubMedCrossRefGoogle Scholar
  10. 10.
    Williams J, Moreton K (1980) J Biochem 185:483–488Google Scholar
  11. 11.
    Byrne SL, Mason AB (2009) J Biol Inorg Chem 14:771–781PubMedCrossRefGoogle Scholar
  12. 12.
    Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Cell 142:24–38PubMedCrossRefGoogle Scholar
  13. 13.
    Punnonen K, Irjala K, Rajamaki A (1994) Clin Chem 40:774–776PubMedGoogle Scholar
  14. 14.
    Punnonen K, Irjala K, Rajamaki A (1997) Blood 89:1052–1057PubMedGoogle Scholar
  15. 15.
    Anderson RV, Tybjaerg-Hansen A, Appleyard M, Birgens H, Nordestgaard BG (2004) Blood 103:2914–2919CrossRefGoogle Scholar
  16. 16.
    Tinoco AD, Valentine AM (2005) J Am Chem Soc 127:11218–11219PubMedCrossRefGoogle Scholar
  17. 17.
    Cox MC, Barnham KJ, Frenkiel TA, Hoeschele JD, Mason AB, He Q-Y, Woodworth RC, Sadler PJ (1999) J Biol Inorg Chem 4:621–631PubMedCrossRefGoogle Scholar
  18. 18.
    Quarles CD Jr, Brumaghim JL, Marcus RK (2010) Metallomics 2:154–161PubMedCrossRefGoogle Scholar
  19. 19.
    Masuoka J, Hegenauer J, Van Dyke BR, Saltman P (1993) J Biol Chem 268:21533–21537PubMedGoogle Scholar
  20. 20.
    Tinoco AD, Eames EV, Valentine AM (2008) J Am Chem Soc 130:2262–2270PubMedCrossRefGoogle Scholar
  21. 21.
    Clodfelder BJ, Emamaullee J, Hepburn DDD, Chakov NE, Nettles HS, Vincent JB (2001) J Biol Inorg Chem 6:608–617PubMedCrossRefGoogle Scholar
  22. 22.
    Sun Y, Ramirez J, Woski SA, Vincent JB (2000) J Biol Inorg Chem 5:129–136PubMedCrossRefGoogle Scholar
  23. 23.
    Quarles CD Jr, Brumaghim JL, Marcus RK (2010) Metallomics 2:792–799PubMedCrossRefGoogle Scholar
  24. 24.
    Harris WR (1986) J Inorg Chem 27:41–52Google Scholar
  25. 25.
    Cefalu WT, Hu FB (2004) Diabetes Care 27:2741–2751PubMedCrossRefGoogle Scholar
  26. 26.
    Vincent JB (2000) J Nutr 130:715–718PubMedGoogle Scholar
  27. 27.
    Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J, Rasco JF, Vincent JB (2011) J Biol Inorg Chem 16:381–390PubMedCrossRefGoogle Scholar
  28. 28.
    Zalups RK, Koropatnick J (2000) Molecular biology and toxicology of metals. Taylor and Francis, New York, pp 113–128Google Scholar
  29. 29.
    Jeejeebhoy KN (1999) Nutr Rev 57:329–335PubMedCrossRefGoogle Scholar
  30. 30.
    Lavi N, Alfassi ZB (1990) Analyst 115:817–822PubMedCrossRefGoogle Scholar
  31. 31.
    Vincent JB (2000) Acc Chem Res 33:503–510PubMedCrossRefGoogle Scholar
  32. 32.
    Clodfelder BJ, Upchurch RG, Vincent JB (2004) J Inorg Chem 98:522–533Google Scholar
  33. 33.
    Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42:35–56PubMedCrossRefGoogle Scholar
  34. 34.
    Howard JMH (1980) Clin Chem 26:1515PubMedGoogle Scholar
  35. 35.
    Noveli EL, Rodrigues NL, Ribas BO (1995) Hum Exp Toxicol 14:248–251CrossRefGoogle Scholar
  36. 36.
    Sunderman FW, Dingle B, Hopfer SM, Swift T (1988) Am J Ind Med 14:257–266PubMedCrossRefGoogle Scholar
  37. 37.
    Templeton DM, Sunderman FW Jr, Herber RFM (1994) Sci Tot Environ 148:243–251CrossRefGoogle Scholar
  38. 38.
    Costa M, Zhuang Z, Huang X, Cosentino S, Klein CB, Salnikow K (1994) Sci Total Environ 148:191–199PubMedCrossRefGoogle Scholar
  39. 39.
    Kasprzak KS, Gabryel P, Jarczewska K (1983) Carcinogenesis 4:275–279PubMedCrossRefGoogle Scholar
  40. 40.
    Chen H, Davidson T, Singleton S, Garrick MD, Costa M (2005) Toxicol Appl Pharmacol 206:275–287PubMedCrossRefGoogle Scholar
  41. 41.
    Davidson T, Chen H, Garrick MD, D’Angelo G, Costa M (2005) Mol Cell Biochem 279:157–162PubMedCrossRefGoogle Scholar
  42. 42.
    Brewer TM, Marcus RK (2007) Anal Chem 79:2402–2411PubMedCrossRefGoogle Scholar
  43. 43.
    Dempster MA, Marcus RK (2000) J Anal At Spectrom 15:43–48CrossRefGoogle Scholar
  44. 44.
    Jin F, Marcus RK (2003) J Anal At Spectrom 18:589–595CrossRefGoogle Scholar
  45. 45.
    Battin EE, Lawhon A, Hamilton DH, Brumaghim JL (2009) J Chem Educ 86:969–972CrossRefGoogle Scholar
  46. 46.
    Evans RW, Williams J (1978) Biochem J 173:543–552PubMedGoogle Scholar
  47. 47.
    Brewer TM, Castro J, Marcus RK (2006) Spectrochim Acta Part B At Spectrom 61:134–149CrossRefGoogle Scholar
  48. 48.
    Brewer TM, Fernandez B, Marcus RK (2005) J Anal At Spectrom 20:924–931CrossRefGoogle Scholar
  49. 49.
    Jin F, Lenghaus K, Hickman J, Marcus RK (2003) Anal Chem 75:4801–4810PubMedCrossRefGoogle Scholar
  50. 50.
    Quarles CD Jr, Marcus RK (2009) Spectrochim Acta Part B At Spectrom 64:1185–1193CrossRefGoogle Scholar
  51. 51.
    You J, Dempster MA, Marcus RK (1997) Anal Chem 69:3419–3426PubMedCrossRefGoogle Scholar
  52. 52.
    You J, Fanning JC, Marcus RK (1994) Anal Chem 66:3916–3924CrossRefGoogle Scholar
  53. 53.
    Minoia C, Cavalleri A (1988) Sci Total Environ 71:323–327PubMedCrossRefGoogle Scholar
  54. 54.
    Groessl M, Terenghi M, Casini A, Elviri L, Lobinski R, Dyson PJ (2010) J Anal At Spectrom 25:305–313PubMedCrossRefGoogle Scholar
  55. 55.
    Osaki S, Johnson DA, Frieden E (1966) J Biol Chem 241:2746–2751PubMedGoogle Scholar

Copyright information

© SBIC 2011

Authors and Affiliations

  • C. Derrick QuarlesJr.
    • 1
  • R. Kenneth Marcus
    • 1
  • Julia L. Brumaghim
    • 1
  1. 1.Department of Chemistry, Hunter LaboratoriesClemson UniversityClemsonUSA

Personalised recommendations