Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 2, pp 333–340 | Cite as

Zinc(II) modulates specifically amyloid formation and structure in model peptides

  • Bruno Alies
  • Vincent Pradines
  • Isabelle Llorens-Alliot
  • Stéphanie Sayen
  • Emmanuel Guillon
  • Christelle HureauEmail author
  • Peter FallerEmail author
Original Paper

Abstract

Metal ions such as zinc and copper can have dramatic effects on the aggregation kinetics of and the structures formed by several amyloidogenic peptides/proteins. Depending on the identity of the amyloidogenic peptide/protein and the conditions, Zn(II) and Cu(II) can promote or inhibit fibril formation, and in some cases these metal ions have opposite effects. To better understand this modulation of peptide aggregation by metal ions, the impact of Zn(II) binding to three amyloidogenic peptides (Aβ14-23, Aβ11-23, and Aβ11-28) on the formation and structure of amyloid-type fibrils was investigated. Zn(II) was able to accelerate fibril formation for all three peptides as measured by thioflavin T fluorescence and transmission electron microscopy. The effects of Zn(II) on Aβ11-23 and Aβ11-28 aggregation were very different compared with the effects of Cu(II), showing that these promoting effects were metal-specific. X-ray absorption spectroscopy suggested that the Zn(II) binding to Aβ11-23 and Aβ11-28 is very different from Cu(II) binding, but that the binding is similar in the case of Aβ14-23. A model is proposed in which the different coordination chemistry of Zn(II) compared with Cu(II) explains the metal-specific effect on aggregation and the difference between peptides Aβ14-23 and Aβ11-23/Aβ11-28.

Keywords

Amyloid Zinc Copper Aggregation Spectroscopy 

Abbreviations

Amyloid β

ESRF

European Synchrotron Radiation Facility

EXAFS

Extended X-ray absorption fine structure

Hepes

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

POPSO

Piperazine-1,4-bis-(2-hydroxy-propane-sulfonic acid) dihydrate

ThT

Thioflavin T

XAS

X-ray absorption spectroscopy

Notes

Acknowledgments

We acknowledge the ESRF for beamtime provision and the team of beamline FAME 30B, especially Olivier Proux, for their helpful support. We also thank Thomas Lunardi and the EMBL laboratory (Grenoble) for their support in performing UV–vis spectroscopy near the beamline, and Vincent Colliere and Diana Ciuculescu (LCC Toulouse) for part of the transmission electron microscopy experiments. This work was supported by the ESRF (Experiment CH-3015), a grant from the French Ministry (MERT) (B.A.), and a grant from the Agence Nationale de la Recherche (ANR) Programme Blanc NT09-488591, “NEUROMETALS” (P.F. and C.H.).

Supplementary material

775_2010_729_MOESM1_ESM.pdf (219 kb)
Supplementary material 1 (PDF 219 kb)

References

  1. 1.
    Klein WL, Stine WB Jr, Teplow DB (2004) Neurobiol Aging 25:569–580CrossRefPubMedGoogle Scholar
  2. 2.
    Rousseau F, Schymkowitz J, Serrano L (2006) Curr Opin Struct Biol 16:118–126CrossRefPubMedGoogle Scholar
  3. 3.
    Drago D, Bolognin S, Zatta P (2008) Curr Alzheimer Res 5:500–507CrossRefPubMedGoogle Scholar
  4. 4.
    Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214CrossRefPubMedGoogle Scholar
  5. 5.
    Molina-Holgado F, Hider RC, Gaeta A, Williams R, Francis P (2007) Biometals 20:639–654CrossRefPubMedGoogle Scholar
  6. 6.
    Zou J, Kajita K, Sugimoto N (2001) Angew Chem Int Ed 40:2274–2277CrossRefGoogle Scholar
  7. 7.
    Khan A, Ashcroft AE, Higenell V, Korchazhkina OV, Exley C (2005) J Inorg Biochem 99:1920–1927CrossRefPubMedGoogle Scholar
  8. 8.
    Khan A, Ashcroft AE, Korchazhkina OV, Exley C (2004) J Inorg Biochem 98:2006–2010CrossRefPubMedGoogle Scholar
  9. 9.
    Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cervenansky C, Zweckstetter M, Griesinger C, Fernandez CO (2008) J Am Chem Soc 130:11801–11812CrossRefPubMedGoogle Scholar
  10. 10.
    Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Biochemistry 40:8073–8084CrossRefPubMedGoogle Scholar
  11. 11.
    Suhre MH, Hess S, Golser AV, Scheibel T (2009) J Inorg Biochem 103:1711–1720CrossRefPubMedGoogle Scholar
  12. 12.
    Ward B, Walker K, Exley C (2008) J Inorg Biochem 102:371–375CrossRefPubMedGoogle Scholar
  13. 13.
    Wilkinson-White LE, Easterbrook-Smith SB (2007) Biochemistry 46:9123–9132CrossRefPubMedGoogle Scholar
  14. 14.
    Hamley IW (2007) Angew Chem Int Ed 46:8128–8147CrossRefGoogle Scholar
  15. 15.
    Lynn DG, Meredith SC (2000) J Struct Biol 130:153–173CrossRefPubMedGoogle Scholar
  16. 16.
    Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AO, Riekel C (2006) Acc Chem Res 39:568–575CrossRefPubMedGoogle Scholar
  17. 17.
    Yang H, Pritzker M, Fung SY, Sheng Y, Wang W, Chen P (2006) Langmuir 22:8553–8562CrossRefPubMedGoogle Scholar
  18. 18.
    Pagel K, Seri T, von Berlepsch H, Griebel J, Kirmse R, Bottcher C, Koksch B (2008) ChemBioChem 9:531–536CrossRefPubMedGoogle Scholar
  19. 19.
    Hoernke M, Koksch B, Brezesinski G (2010) Biophys Chem 150:64–72CrossRefPubMedGoogle Scholar
  20. 20.
    Schlosser G, Stefanescu R, Przybylski M, Murariu M, Hudecz F, Drochioiu G (2007) Eur J Mass Spectrom (Chichester Eng) 13:331–337CrossRefGoogle Scholar
  21. 21.
    Dong J, Canfield JM, Mehta AK, Shokes JE, Tian B, Childers WS, Simmons JA, Mao Z, Scott RA, Warncke K, Lynn DG (2007) Proc Natl Acad Sci USA 104:13313–13318CrossRefPubMedGoogle Scholar
  22. 22.
    Dong J, Shokes JE, Scott RA, Lynn DG (2006) J Am Chem Soc 128:3540–3542CrossRefPubMedGoogle Scholar
  23. 23.
    Scotter AJ, Guo M, Tomczak MM, Daley ME, Campbell RL, Oko RJ, Bateman DA, Chakrabartty A, Sykes BD, Davies PL (2007) BMC Struct Biol 7:63CrossRefPubMedGoogle Scholar
  24. 24.
    Dorlet P, Gambarelli S, Faller P, Hureau C (2009) Angew Chem Int Ed 48:9273–9276CrossRefGoogle Scholar
  25. 25.
    Hureau C, Coppel Y, Dorlet P, Solari PL, Sayen S, Guillon E, Sabater L, Faller P (2009) Angew Chem Int Ed 48:9522–9525CrossRefGoogle Scholar
  26. 26.
    Drew SC, Masters CL, Barnham KJ (2009) J Am Chem Soc 131:8760–8761CrossRefPubMedGoogle Scholar
  27. 27.
    Drew SC, Noble CJ, Masters CL, Hanson GR, Barnham KJ (2009) J Am Chem Soc 131:1195–1207CrossRefPubMedGoogle Scholar
  28. 28.
    Esler WP, Stimson ER, Ghilardi JR, Lu YA, Felix AM, Vinters HV, Mantyh PW, Lee JP, Maggio JE (1996) Biochemistry 35:13914–13921CrossRefPubMedGoogle Scholar
  29. 29.
    Pradines V, Jurca Stoia A, Faller P (2009) New J Chem 32:1189–1194CrossRefGoogle Scholar
  30. 30.
    Ciuculescu ED, Mekmouche Y, Faller P (2005) Chem Eur J 11:903–909CrossRefGoogle Scholar
  31. 31.
    Hellstrand E, Boland B, Walsh DM, Linse S (2009) ACS Chem Neurosci 1:13–18CrossRefGoogle Scholar
  32. 32.
    Proux O, Nassif V, Prat A, Ulrich O, Lahera E, Biquard X, Menthonnex JJ, Hazemann JL (2006) J Synchrotron Radiat 13:59–68CrossRefPubMedGoogle Scholar
  33. 33.
    Proux O, Biquard X, Lahera E, Menthonnex J-J, Prat A, Ulrich O, Soldo Y, Trevisson P, Kapoujyan G, Perroux G, Taunier P, Grand D, Jeantet P, Deleglise M, Roux J-P, Hazemann JL (2005) Phys Scr T 115:970–973CrossRefGoogle Scholar
  34. 34.
    Michalowicz A, Muller-Bouvet D, Provost K (2009) J Phys Conf Ser 012034–012035Google Scholar
  35. 35.
    Lengeler B, Eisenberg P (1980) Phys Rev B Condens Matter Mater Phys 21:4507–4520CrossRefGoogle Scholar
  36. 36.
    Zabinsky SI, Rehr JJ, Ankudinov AL, Albers RC, Eller MJ (1995) Phys Rev B Condens Matter 52:2995–3009CrossRefPubMedGoogle Scholar
  37. 37.
    Luo W, Meng XG, Cheng GZ, Ji ZP (2007) Acta Crystallogr Sect E Struct Rep 63:m2482CrossRefGoogle Scholar
  38. 38.
    LeVine H 3rd (1999) Methods Enzymol 309:274–284CrossRefPubMedGoogle Scholar
  39. 39.
    Morris AM, Watzky MA, Agar JN, Finke RG (2008) Biochemistry 47:2413–2427CrossRefPubMedGoogle Scholar
  40. 40.
    Giachini L, Veronesi G, Francia F, Venturoli G, Boscherini F (2010) J Synchrotron Radiat 17:41–52CrossRefPubMedGoogle Scholar
  41. 41.
    Harford C, Sarkar B (1997) Acc Chem Res 30:123–130CrossRefGoogle Scholar
  42. 42.
    Lakusta H, Deber CM, Sarkar B (1980) Can J Chem 58:757–766CrossRefGoogle Scholar
  43. 43.
    Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Nature 424:805–808CrossRefPubMedGoogle Scholar
  44. 44.
    Lopez De La Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, Serrano L (2002) Proc Natl Acad Sci USA 99:16052–16057CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Bruno Alies
    • 1
    • 2
  • Vincent Pradines
    • 1
    • 2
  • Isabelle Llorens-Alliot
    • 3
  • Stéphanie Sayen
    • 4
  • Emmanuel Guillon
    • 4
  • Christelle Hureau
    • 1
    • 2
    Email author
  • Peter Faller
    • 1
    • 2
    Email author
  1. 1.LCC (Laboratoire de Chimie de Coordination), CNRSToulouseFrance
  2. 2.Université de Toulouse, UPS, INPTToulouseFrance
  3. 3.CEA/DSM/INAC/NRSGrenobleFrance
  4. 4.Institut de Chimie Moléculaire de Reims (ICMR, CNRS UMR 6229), Groupe Chimie de CoordinationUniversité de Reims Champagne-ArdenneReims Cedex 2France

Personalised recommendations