JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 2, pp 243–256 | Cite as

Structural characterization of human S100A16, a low-affinity calcium binder

  • Elena Babini
  • Ivano Bertini
  • Valentina Borsi
  • Vito Calderone
  • Xiaoyu Hu
  • Claudio Luchinat
  • Giacomo Parigi
Original Paper

Abstract

The homodimeric structure of human S100A16 in the apo state has been obtained both in the solid state and in solution, resulting in good agreement between the structures with the exception of two loop regions. The homodimeric solution structure of human S100A16 was also calculated in the calcium(II)-bound form. Differently from most S100 proteins, the conformational rearrangement upon calcium binding is minor. This characteristic is likely to be related to the weak binding affinity of the protein for the calcium(II) ions. In turn, this is ascribed to the lack of the glutamate residue at the end of the S100-specific N-domain binding site, which in most S100 proteins provides two important side chain oxygen atoms as calcium(II) ligands. Furthermore, the presence of hydrophobic interactions stronger than for other S100 proteins, present in the closed form of S100A16 between the third and fourth helices, likely make the closed structure of the second EF-hand particularly stable, so even upon calcium(II) binding such a conformation is not disrupted.

Keywords

S100A16 EF-hand proteins Calcium-binding proteins S100 proteins Protein dynamics 

Supplementary material

775_2010_721_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 120 kb)

References

  1. 1.
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Biochem J 396:201–214CrossRefPubMedGoogle Scholar
  2. 2.
    Donato R (2003) Microsc Res Tech 60:540–551CrossRefPubMedGoogle Scholar
  3. 3.
    Donato R (1986) Cell Calcium 7:123–145CrossRefPubMedGoogle Scholar
  4. 4.
    Nelson MR, Chazin WJ (1998) Biometals 11:297–318CrossRefPubMedGoogle Scholar
  5. 5.
    Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thøgersen HC, Nyborg J, Kjeldgaard M (1998) Structure 6:477–489CrossRefPubMedGoogle Scholar
  6. 6.
    Wilder PT, Baldisseri DM, Udan R, Vallely KM, Weber DJ (2003) Biochemistry 42:13410–13421CrossRefPubMedGoogle Scholar
  7. 7.
    Randazzo A, Acklin C, Schafer BW, Heizmann CW, Chazin WJ (2001) Biochem Biophys Res Commun 288:462–467CrossRefPubMedGoogle Scholar
  8. 8.
    Brodersen DE, Nyborg J, Kjeldgaard M (1999) Biochemistry 38:1695–1704CrossRefPubMedGoogle Scholar
  9. 9.
    Moroz OV, Burkitt W, Wittkowski H, He W, Ianoul A, Novitskaya V, Xie J, Polyakova O, Lednev IK, Shekhtman A, Derrick PJ, Bjoerk P, Foell D, Bronstein IB (2009) BMC Biochem 10:11CrossRefPubMedGoogle Scholar
  10. 10.
    Hwang JJ, Park MH, Choi SY, Koh JY (2005) J Biol Chem 280:11995–12001CrossRefPubMedGoogle Scholar
  11. 11.
    Yu WH, Fraser PE (2001) J Neurosci 21:2240–2246PubMedGoogle Scholar
  12. 12.
    Marenholz I, Heizmann CW (2004) Biochem Biophys Res Commun 313:237–244CrossRefPubMedGoogle Scholar
  13. 13.
    Sturchler E, Cox JA, Durussel I, Weibel M, Heizmann CW (2006) J Biol Chem 281:38905–38917CrossRefPubMedGoogle Scholar
  14. 14.
    Ridinger K, Ilg EC, Niggli FK, Heizmann CW, Schäfer BW (1998) Biochim Biophys Acta 1448:254–263CrossRefPubMedGoogle Scholar
  15. 15.
    Leslie AGW (1991) In: Moras D, Podjarny AD, Thierry J-C (eds) Molecular data processing. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Evans PR (1993) Proceedings of the CCP4 study weekend. In: Sawyer L, Isaacs N, Bailey S (eds) Data collection and processing, pp 114–122Google Scholar
  17. 17.
    Collaborative Computational Project N (1994) Acta Crystallogr D50:760–763Google Scholar
  18. 18.
    Schneider TR, Sheldrick GM (2002) Acta Crystallogr D 58:1772–1779CrossRefPubMedGoogle Scholar
  19. 19.
    Sheldrick GM (2008) Acta Crystallogr A 64:112–122CrossRefPubMedGoogle Scholar
  20. 20.
    Vonrhein C, Blanc E, Roversi P, Bricogne G (2007) Methods Mol Biol 364:215–230PubMedGoogle Scholar
  21. 21.
    Bricogne G, Vonrhein C, Flensburg C, Schiltz M, Paciorek W (2003) Acta Crystallogr D 59:2023–2030CrossRefPubMedGoogle Scholar
  22. 22.
    Perrakis A, Morris RJH, Lamzin VS (1999) Nat Struct Biol 6:458–463CrossRefPubMedGoogle Scholar
  23. 23.
    Cowtan K (2006) Acta Crystallogr D 62:1002–1011CrossRefPubMedGoogle Scholar
  24. 24.
    McRee DE (1999) J Struct Biol 125:156–165CrossRefPubMedGoogle Scholar
  25. 25.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D53:240–255Google Scholar
  26. 26.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  27. 27.
    Keller R (2004) The computer aided resonance assignment tutorial. CANTINA, GoldauGoogle Scholar
  28. 28.
    Shen Y, Delaglio F, Cornilescu G, Bax A (2009) J Biomol NMR 44:213–223CrossRefPubMedGoogle Scholar
  29. 29.
    Guntert P (2004) Methods Mol Biol 278:353–378PubMedGoogle Scholar
  30. 30.
    Herrmann T, Güntert P, Wüthrich K (2002) J Mol Biol 319:209–227CrossRefPubMedGoogle Scholar
  31. 31.
    Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister CE, Caldwell JW, Ross WS, Kollman PA (2008) AMBER 10. University of California, San FranciscoGoogle Scholar
  32. 32.
    Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486CrossRefPubMedGoogle Scholar
  33. 33.
    Vriend G (1990) J Mol Graphics 8:52–56CrossRefGoogle Scholar
  34. 34.
    Kay LE, Torchia DA, Bax A (1989) Biochemistry 28:8972–8979CrossRefPubMedGoogle Scholar
  35. 35.
    Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Biochemistry 31:5269–5278CrossRefPubMedGoogle Scholar
  36. 36.
    Goddard TD, Kneller DG (2000) SPARKY 3. University of California, San FranciscoGoogle Scholar
  37. 37.
    Lipari G, Szabo A (1982) J Am Chem Soc 104:4546–4559CrossRefGoogle Scholar
  38. 38.
    Dosset P, Hus JC, Marion D, Blackledge M (2001) J Biomol NMR 20:223–231CrossRefPubMedGoogle Scholar
  39. 39.
    Garcia de la Torre JG, Huertas ML, Carrasco B (2000) J Magn Reson 147:138–146CrossRefPubMedGoogle Scholar
  40. 40.
    Inman KG, Baldisseri DM, Miller KE, Weber DJ (2001) Biochemistry 40:3439–3448CrossRefPubMedGoogle Scholar
  41. 41.
    Zhukov I, Ejchart A, Bierzynski A (2008) Biochemistry 47:640–650CrossRefPubMedGoogle Scholar
  42. 42.
    Dutta K, Cox CJ, Basavappa R, Pascal SM (2008) Biochemistry 47:7637–7647CrossRefPubMedGoogle Scholar
  43. 43.
    Bertini I, Fragai M, Luchinat C, Parigi G (2000) Magn Reson Chem 38:543–550CrossRefGoogle Scholar
  44. 44.
    Arnesano F, Banci L, Bertini I, Fantoni A, Tenori L, Viezzoli MS (2005) Angew Chem Int Ed 44:6341–6344CrossRefGoogle Scholar
  45. 45.
    Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti N, Svergun D (2009) J Biol Chem 284:12821–12828CrossRefPubMedGoogle Scholar
  46. 46.
    Bertini I, Calderone V, Fragai M, Jaiswal R, Luchinat C, Melikian M, Mylonas E, Svergun D (2008) J Am Chem Soc 130:7011–7021CrossRefPubMedGoogle Scholar
  47. 47.
    Bertini I, Gupta YK, Luchinat C, Parigi G, Schlörb C, Schwalbe H (2005) Angew Chem Int Ed 44:2223–2225CrossRefGoogle Scholar
  48. 48.
    Luchinat C, Parigi G (2007) J Am Chem Soc 129:1055–1064CrossRefPubMedGoogle Scholar
  49. 49.
    Bertini I, Dasgupta S, Hu X, Karavelas T, Luchinat C, Parigi G, Yuan J (2009) J Biol Inorg Chem 14:1097–1107CrossRefPubMedGoogle Scholar
  50. 50.
    Brüschweiler R (2003) Curr Opin Struct Biol 13:175–183CrossRefPubMedGoogle Scholar
  51. 51.
    Bernadò P, Garcìa de la Torre J, Pons M (2002) J Biomol NMR 23:139–150CrossRefPubMedGoogle Scholar
  52. 52.
    Smith SP, Shaw GS (1998) Structure 6:211–222CrossRefPubMedGoogle Scholar
  53. 53.
    Otterbein L, Kordowska J, Witte-Hoffmann C, Wang CL, Dominguez R (2002) Structure 10:557–567CrossRefPubMedGoogle Scholar
  54. 54.
    Drohat AC, Baldisseri DM, Rustandi RR, Weber DJ (1998) Biochemistry 37:2729–2740CrossRefPubMedGoogle Scholar
  55. 55.
    Babini E, Bertini I, Capozzi F, Luchinat C, Quattrone A, Turano M (2005) J Proteome Res 4:1961–1971CrossRefPubMedGoogle Scholar
  56. 56.
    Marenholz I, Heizmann CW, Fritz G (2004) Biochem Biophys Res Commun 322:1111–1122CrossRefPubMedGoogle Scholar
  57. 57.
    Maler L, Sastry M, Chazin WJ (2002) J Mol Biol 317:279–290CrossRefPubMedGoogle Scholar
  58. 58.
    Bhattacharya S, Chazin WJ (2003) Structure 11:738–739CrossRefPubMedGoogle Scholar
  59. 59.
    Gerke V, Weber K (1985) EMBO J 4:2917–2920PubMedGoogle Scholar
  60. 60.
    Rety S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, Russo-Marie F, Lewit-Bentley A (1999) Nat Struct Biol 6:89–95CrossRefPubMedGoogle Scholar
  61. 61.
    Kube E, Becker T, Weber K, Gerke V (1992) J Biol Chem 267:14175–14182PubMedGoogle Scholar
  62. 62.
    Rescher U, Gerke V (2008) Pflugers Arch J Physiol 455:575–582CrossRefGoogle Scholar
  63. 63.
    Smith SP, Shaw GS (1998) Structure 6:211–222CrossRefPubMedGoogle Scholar
  64. 64.
    Kilby PM, Van Eldik LJ, Roberts GC (1996) Structure 4:1041–1052CrossRefPubMedGoogle Scholar
  65. 65.
    Jacob J, Duclohier H, Cafiso DS (1999) Biophys J 76:1367–1376CrossRefPubMedGoogle Scholar
  66. 66.
    Richardson JS (1981) Adv Protein Chem 34:167–339CrossRefPubMedGoogle Scholar
  67. 67.
    MacArthur MW, Thornton JM (1991) J Mol Biol 218:397–412CrossRefPubMedGoogle Scholar
  68. 68.
    Blaber M, Zhang XJ, Matthews BW (1993) Science 260:1637–1640CrossRefPubMedGoogle Scholar
  69. 69.
    Koradi R, Billeter M, Wüthrich K (1996) J Mol Graphics 14:51–55CrossRefGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Elena Babini
    • 1
  • Ivano Bertini
    • 2
    • 3
  • Valentina Borsi
    • 2
  • Vito Calderone
    • 2
  • Xiaoyu Hu
    • 2
  • Claudio Luchinat
    • 2
    • 3
  • Giacomo Parigi
    • 2
    • 3
  1. 1.Department of Food ScienceUniversity of BolognaCesenaItaly
  2. 2.Magnetic Resonance Center (CERM)University of FlorenceSesto FiorentinoItaly
  3. 3.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations