JBIC Journal of Biological Inorganic Chemistry

, Volume 16, Issue 2, pp 235–242 | Cite as

Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase

  • Mattias D. Hansson
  • Tobias Karlberg
  • Christopher A. G. Söderberg
  • Sreekanth Rajan
  • Martin J. Warren
  • Salam Al-Karadaghi
  • Stephen E. J. Rigby
  • Mats Hansson
Original Paper


Ferrochelatase catalyzes the insertion of Fe2+ into protoporphyrin IX. The enzymatic product heme (protoheme IX) is a well-known cofactor in a wide range of proteins. The insertion of metal ions other than Fe2+ occurs rarely in vivo, but all ferrochelatases that have been studied can insert Zn2+ at a good rate in vitro. Co2+, but not Cu2+, is known to be a good substrate of the mammalian and Saccharomyces cerevisiae ferrochelatases. In contrast, Cu2+, but not Co2+, has been found to be a good substrate of bacterial Bacillus subtilis ferrochelatase. It is not known how ferrochelatase discriminates between different metal ion substrates. Structural analysis of B. subtilis ferrochelatase has shown that Tyr13 is an indirect ligand of Fe2+ and a direct ligand of a copper mesoporphyrin product. A structure-based comparison revealed that Tyr13 aligns with a Met residue in the S. cerevisiae and human ferrochelatases. Tyr13 was changed to Met in the B. subtilis enzyme by site-directed mutagenesis. Enzymatic measurements showed that the modified enzyme inserted Co2+ at a higher rate than the wild-type B. subtilis ferrochelatase, but it had lost the ability to use Cu2+ as a substrate. Thus, the B. subtilis Tyr13Met ferrochelatase showed the same metal specificity as that of the ferrochelatases from S. cerevisiae and human.


Cobalt Copper Ferrochelatase hemH Metal specificity 



Electron paramagnetic resonance


Protein data bank

Supplementary material

775_2010_720_MOESM1_ESM.pdf (36 kb)
Supplementary material 1 (PDF 36 kb)


  1. 1.
    Dailey HA, Dailey TA (2003) In: Kadish KM, Smith K, Guilard R (eds) The tetrapyrrole handbook II. Academic Press, San Diego, pp 93–122Google Scholar
  2. 2.
    Dailey HA, Dailey TA, Wu CK, Medlock AE, Wang KF, Rose JP, Wang BC (2000) Cell Mol Life Sci 57:1909–1926CrossRefPubMedGoogle Scholar
  3. 3.
    Grandjean P, Lintrup J (1978) Scand J Clin Lab Invest 38:669–675CrossRefPubMedGoogle Scholar
  4. 4.
    Lamola AA, Yamane T (1974) Science 186:936–938CrossRefPubMedGoogle Scholar
  5. 5.
    Hunter GA, Sampson MP, Ferreira GC (2008) J Biol Chem 283:23685–23691CrossRefPubMedGoogle Scholar
  6. 6.
    Taketani S, Tokunaga R (1982) Eur J Biochem 127:443–447CrossRefPubMedGoogle Scholar
  7. 7.
    Hansson M, Hederstedt L (1994) Eur J Biochem 220:201–208CrossRefPubMedGoogle Scholar
  8. 8.
    Al-Karadaghi S, Hansson M, Nikonov S, Jönsson B, Hederstedt L (1997) Structure 5:1501–1510CrossRefPubMedGoogle Scholar
  9. 9.
    Karlberg T, Lecerof D, Gora M, Silvegren G, Labbe-Bois R, Hansson M, Al-Karadaghi S (2002) Biochemistry 41:13499–13506CrossRefPubMedGoogle Scholar
  10. 10.
    Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC (2001) Nat Struct Biol 8:156–160CrossRefPubMedGoogle Scholar
  11. 11.
    Hansson MD, Karlberg T, Rahardja MA, Al-Karadaghi S, Hansson M (2007) Biochemistry 46:87–94CrossRefPubMedGoogle Scholar
  12. 12.
    Karlberg T, Hansson MD, Yengo RK, Johansson R, Thorvaldsen HO, Ferreira GC, Hansson M, Al-Karadaghi S (2008) J Mol Biol 378:1074–1083CrossRefPubMedGoogle Scholar
  13. 13.
    Medlock A, Swartz L, Dailey TA, Dailey HA, Lanzilotta WN (2007) Proc Natl Acad Sci USA 104:1789–1793CrossRefPubMedGoogle Scholar
  14. 14.
    Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S (2000) J Mol Biol 297:221–232CrossRefPubMedGoogle Scholar
  15. 15.
    Shipovskov S, Karlberg T, Fodje M, Hansson MD, Ferreira GC, Hansson M, Reimann CT, Al-Karadaghi S (2005) J Mol Biol 352:1081–1090CrossRefPubMedGoogle Scholar
  16. 16.
    Medlock AE, Dailey TA, Ross TA, Dailey HA, Lanzilotta WN (2007) J Mol Biol 373:1006–1016CrossRefPubMedGoogle Scholar
  17. 17.
    Hansson MD, Lindstam M, Hansson M (2006) J Biol Inorg Chem 11:325–333CrossRefPubMedGoogle Scholar
  18. 18.
    Hansson M, Al-Karadaghi S (1995) Proteins 23:607–609CrossRefPubMedGoogle Scholar
  19. 19.
    Mammen CB, Ursby T, Thunnissen M, Als-Nielsen J (2004) AIP Conf Proc 705:808–811CrossRefGoogle Scholar
  20. 20.
    Kabsch W (1993) J Appl Crystallogr 26:795–800CrossRefGoogle Scholar
  21. 21.
    Collaborative Computational Project N (1994) Acta Crystallogr D 50:760–763CrossRefGoogle Scholar
  22. 22.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D 54:905–921CrossRefPubMedGoogle Scholar
  23. 23.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D 53:240–255CrossRefPubMedGoogle Scholar
  24. 24.
    Emsley P, Cowtan K (2004) Acta Crystallogr D 60:2126–2132CrossRefPubMedGoogle Scholar
  25. 25.
    Shindyalov IN, Bourne PE (1998) Protein Eng 11:739–747CrossRefPubMedGoogle Scholar
  26. 26.
    Lecerof D, Fodje MN, León RA, Olsson U, Hansson A, Sigfridsson E, Ryde U, Hansson M, Al-Karadaghi S (2003) J Biol Inorg Chem 8:452–458PubMedGoogle Scholar
  27. 27.
    Schubert HL, Rose RS, Leech HK, Brindley AA, Hill CP, Rigby SE, Warren MJ (2008) Biochem J 415:257–263CrossRefPubMedGoogle Scholar
  28. 28.
    Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) Inorg Chem 19:1301–1304CrossRefGoogle Scholar
  29. 29.
    Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708CrossRefPubMedGoogle Scholar
  30. 30.
    Hambright P, Chock PB (1974) J Am Chem Soc 96:3123–3131CrossRefPubMedGoogle Scholar
  31. 31.
    Lavallee DK (1988) Mol Struct Energ 9:279–313Google Scholar
  32. 32.
    Sigfridsson E, Ryde U (2003) J Biol Inorg Chem 8:273–282PubMedGoogle Scholar
  33. 33.
    Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA, Isaya G, Ferreira GC (2006) Trends Biochem Sci 31:135–142CrossRefPubMedGoogle Scholar
  34. 34.
    Hoggins M, Dailey HA, Hunter CN, Reid JD (2007) Biochemistry 46:8121–8127CrossRefPubMedGoogle Scholar
  35. 35.
    Medlock AE, Carter M, Dailey TA, Dailey HA, Lanzilotta WN (2009) J Mol Biol 393:308–319CrossRefPubMedGoogle Scholar
  36. 36.
    Williams RJP (1990) Coord Chem Rev 100:573–610CrossRefGoogle Scholar
  37. 37.
    Lesuisse E, Santos R, Matzanke BF, Knight SA, Camadro JM, Dancis A (2003) Hum Mol Genet 12:879–889CrossRefPubMedGoogle Scholar
  38. 38.
    Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Mol Cell Biol 29:1007–1016CrossRefPubMedGoogle Scholar
  39. 39.
    Park S, Gakh O, O’Neill HA, Mangravita A, Nichol H, Ferreira GC, Isaya G (2003) J Biol Chem 278:31340–31351CrossRefPubMedGoogle Scholar
  40. 40.
    Yoon T, Cowan JA (2004) J Biol Chem 279:25943–25946CrossRefPubMedGoogle Scholar
  41. 41.
    Qi W, Cowan JA (2010) Chem Commun 46:719–721Google Scholar
  42. 42.
    Olsson U, Billberg A, Sjövall S, Al-Karadaghi S, Hansson M (2002) J Bacteriol 184:4018–4024CrossRefPubMedGoogle Scholar
  43. 43.
    Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Proteins 50:437–450CrossRefPubMedGoogle Scholar
  44. 44.
    Guda C, Scheeff ED, Bourne PE, Shindyalov IN (2001) Pac Symp Biocomput 275–286Google Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Mattias D. Hansson
    • 1
  • Tobias Karlberg
    • 1
  • Christopher A. G. Söderberg
    • 1
  • Sreekanth Rajan
    • 1
  • Martin J. Warren
    • 2
  • Salam Al-Karadaghi
    • 1
  • Stephen E. J. Rigby
    • 3
  • Mats Hansson
    • 4
  1. 1.Department of Biochemistry and Structural Biology, Center for Molecular Protein ScienceLund UniversityLundSweden
  2. 2.Department of BiosciencesUniversity of KentCanterburyUK
  3. 3.Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK
  4. 4.Carlsberg LaboratoryValbyDenmark

Personalised recommendations