Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago

  • Marcela Ayala
  • Cesar V. Batista
  • Rafael Vazquez-Duhalt
Original Paper


Heme peroxidases are subject to a mechanism-based oxidative inactivation. During the catalytic cycle, the heme group is activated to form highly oxidizing species, which may extract electrons from the protein itself. In this work, we analyze changes in residues prone to oxidation owing to their low redox potential during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago under peroxidasic catalytic conditions. Surprisingly, we found only minor changes in the amino acid content of the fully inactivated enzyme. Our results show that tyrosine residues are not oxidized, whereas all tryptophan residues are partially oxidized in the inactive protein. The data suggest that the main process leading to enzyme inactivation is heme destruction. The molecular characterization of the peroxide-mediated inactivation process could provide specific targets for the protein engineering of this versatile peroxidase.


Chloroperoxidase Heme destruction Heme protein Inactivation Oxidation 


  1. 1.
    Dunford HB (1999) Heme peroxidases. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Ortiz de Montellano PR (2010) In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, BerlinGoogle Scholar
  3. 3.
    Valderrama B, Ayala M, Vazquez-Duhalt R (2002) Chem Biol 9:555–565CrossRefPubMedGoogle Scholar
  4. 4.
    Ayala M (2010) In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, BerlinGoogle Scholar
  5. 5.
    Ayala M, Roman R, Vazquez-Duhalt R (2007) Biochem Biophys Res Commun 357:804–808CrossRefPubMedGoogle Scholar
  6. 6.
    Davies MJ, Dean RT (1997) Radical-mediated protein oxidation. Oxford Science Publications, New YorkGoogle Scholar
  7. 7.
    Valderrama B, Vazquez-Duhalt R (2005) J Mol Catal B Enzym 35:41–44CrossRefGoogle Scholar
  8. 8.
    Hiner ANP, Martinez JI, Arnao MB, Acosta M, Turner DD, Raven EL, Rodríguez-López JN (2001) Eur J Biochem 268:3091–3098CrossRefPubMedGoogle Scholar
  9. 9.
    Lardinois OM, Ortiz de Montellano PR (2000) Biochem Biophys Res Commun 270:199–202CrossRefPubMedGoogle Scholar
  10. 10.
    Blodig W, Doyle WA, Smith AT, Winterhalter K, Choinowski T, Piontek K (1998) Biochemistry 37:8832–8838CrossRefPubMedGoogle Scholar
  11. 11.
    Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) J Mol Biol 286:809–827CrossRefPubMedGoogle Scholar
  12. 12.
    Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R (2005) Biochemistry 44:4267–4274CrossRefPubMedGoogle Scholar
  13. 13.
    Lardinois OM, Medzihradszky KF, Ortiz de Montellano PR (1999) J Biol Chem 274:35441–35448CrossRefPubMedGoogle Scholar
  14. 14.
    Erman JE, Kresheck GC, Vitello LB, Miller MA (1997) Biochemistry 36:4054–4060CrossRefPubMedGoogle Scholar
  15. 15.
    Fielding AJ, Singh R, Boscolo B, Loewen PC, Ghibaudi EM, Ivancich A (2008) Biochemistry 47:9781–9792CrossRefPubMedGoogle Scholar
  16. 16.
    Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) J Biol Chem 281:9517–9526CrossRefPubMedGoogle Scholar
  17. 17.
    Hawkins CL, Davies MJ (2001) Biochim Biophys Acta 1504:196–219CrossRefPubMedGoogle Scholar
  18. 18.
    Prutz WA (1990) In: Chatgilialoglu C, Asmus KD (eds) Sulfur-centered reactive intermediates in chemistry and biology. Plenum Press, New York, pp 389–399Google Scholar
  19. 19.
    Hofrichter M, Ullrich R (2006) Appl Microbiol Biotechnol 71:276–288CrossRefPubMedGoogle Scholar
  20. 20.
    Manoj KM, Hager LP (2008) Biochemistry 47:2297–3003CrossRefGoogle Scholar
  21. 21.
    Grey CE, Hedstrom M, Adlercreutz PA (2007) Chembiochem 8:1055–1062CrossRefPubMedGoogle Scholar
  22. 22.
    Park JB, Clark DS (2006) Biotechnol Bioeng 93:1190–1195CrossRefPubMedGoogle Scholar
  23. 23.
    Shevelkova AN, Ryabov AD (1996) Biochem Mol Biol Int 39:665–670PubMedGoogle Scholar
  24. 24.
    Willist KJ, Szabo AG (1989) Biochemistry 28:4902–4908CrossRefGoogle Scholar
  25. 25.
    Huan L, Ortiz de Montellano PR (2006) Arch Biochem Biophys 446:77–83CrossRefGoogle Scholar
  26. 26.
    Colas C, Kuo JM, Ortiz de Montellano PR (2002) J Biol Chem 277:7191–7200CrossRefPubMedGoogle Scholar
  27. 27.
    Manoj KM, Hager LP (2001) Biochim Biophys Acta Protein Struct Mol Enzymol 1547:408–417CrossRefGoogle Scholar
  28. 28.
    Pfister TD, Gengenbach AJ, Syn S, Lu Y (2001) Biochemistry 40:14942–14951CrossRefPubMedGoogle Scholar
  29. 29.
    Tew D, Ortiz de Montellano PR (1988) J Biol Chem 263:17880–17886PubMedGoogle Scholar
  30. 30.
    Valderrama B, Garcia-Arellano H, Giansanti S, Baratto MC, Pogni R, Vazquez-Duhalt R (2006) FASEB J 20:E472–E481CrossRefGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Marcela Ayala
    • 1
  • Cesar V. Batista
    • 1
  • Rafael Vazquez-Duhalt
    • 1
  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations