Advertisement

Phosphate ester cleavage promoted by a tetrameric iron(III) complex

  • Anob Kantacha
  • Rebecca Buchholz
  • Sarah J. Smith
  • Gerhard Schenk
  • Lawrence R. GahanEmail author
Original Paper

Abstract

The purple acid phosphatases (PAPs) are the only binuclear metallohydrolases where the necessity for a heterovalent active site [Fe(III)–M(II) (M is Fe, Zn or Mn)] for catalysis has been established. The paradigm for the construction of PAP biomimetics, both structural and functional, is that the ligands possess characteristics which mimic those of the donor sites of the metalloenzyme and permit discrimination between trivalent and divalent metal ions. The donor atom set of the ligand 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H3HPBA) mimics that of the active site of PAP although the iron(III) complex of this ligand has been characterized as the tetramer [Fe4(HPBA)2(μ-CH3COO)2(μ-O)(μ-OH)(OH2)2]ClO4·5H2O. The phosphoesterase-like activity of the complex in 1:1 acetonitrile/water has now been investigated using the substrate 2,4-bis(dinitrophenyl)phosphate. The pH dependence of the catalytic rate revealed a non-symmetric bell-shaped profile, with a finite but non-zero rate at high pH. Unlike the traditional approach usually employed to analyse these bell-shaped profiles, the approach used here involved incorporating additional species which contribute to the overall activity. Employing this approach, we show that the complex has a k cat of 1.6 (±0.2) × 10−3 s−1, three kinetically relevant pK a values of 5.3, 6.2 and 8.4, with K M of 7.4 ± 0.6 mM. The kinetic parameters are similar to those reported for heterovalent PAP biomimetics. Additionally, it is observed that, unlike the enzyme, the oxidation state is not the determining factor for catalytic activity.

Graphical Abstract

The phosphoesterase-like activity of the complex [Fe4(HPBA)2(μ-CH3COO)2(μ-O)(μ-OH)(OH2)2]ClO4 has been investigated and the bell-shaped pH–rate profile has been modelled to include the contributions of three catalytically active species and three pK a values.

Keywords

Purple acid phosphatase Phosphodiester-degrading enzyme Binuclear metallohydrolases Iron complexes Biomimetics 

Notes

Acknowledgments

This work was funded by a grant from the Australian Research Council (DP0986292).

References

  1. 1.
    Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) Chem Rev 106:3338–3363CrossRefPubMedGoogle Scholar
  2. 2.
    Klabunde T, Krebs B (1997) Struct Bonding (Berlin) 89:177–198Google Scholar
  3. 3.
    Antanaitis BC, Aisen P, Lilienthal HR (1983) J Biol Chem 258:3166–3172PubMedGoogle Scholar
  4. 4.
    Averill BA, Davis JC, Burman S, Zirino T, Sandersloehr J, Loehr TM, Sage JT, Debrunner PG (1987) J Am Chem Soc 109:3760–3767CrossRefGoogle Scholar
  5. 5.
    Yang YS, McCormick JM, Solomon EI (1997) J Am Chem Soc 119:11832–11842CrossRefGoogle Scholar
  6. 6.
    Wang DL, Holz RC, David SS, Que L, Stankovich MT (1991) Biochemistry 30:8187–8194CrossRefPubMedGoogle Scholar
  7. 7.
    Bernhardt PV, Schenk G, Wilson GJ (2004) Biochemistry 43:10387–10392CrossRefPubMedGoogle Scholar
  8. 8.
    Neves A, de Brito MA, Drago V, Griesar K, Haase W (1995) Inorg Chim Acta 237:131–135CrossRefGoogle Scholar
  9. 9.
    Lanznaster M, Neves A, Bortoluzzi AJ, Aires VVE, Szpoganicz B, Terenzi H, Severino PC, Fuller JM, Drew SC, Gahan LR, Hanson GR, Riley MJ, Schenk G (2005) J Biol Inorg Chem 10:319–332CrossRefPubMedGoogle Scholar
  10. 10.
    Schenk G, Peralta RA, Batista SC, Bortoluzzi AJ, Szpoganics B, Dick AK, Herrald P, Hanson GR, Szilagyi RK, Riley MJ, Gahan LR, Neves A (2008) J Biol Inorg Chem 13:139–155CrossRefPubMedGoogle Scholar
  11. 11.
    Xavier RF, Neves A, Casellato A, Peralta RA, Bortoluzzi AJ, Szpoganicz B, Severino PC, Terenzi H, Tomkowicz Z, Ostrovsky S, Haase W, Ozarowski A, Krzystek J, Telser J, Schenk G, Gahan LR (2009) Inorg Chem 48:7905–7921CrossRefPubMedGoogle Scholar
  12. 12.
    Karsten P, Neves A, Bortoluzzi AJ, Lanznaster M, Drago V (2002) Inorg Chem 41:4624–4626CrossRefPubMedGoogle Scholar
  13. 13.
    Batista SC, Neves A, Bortoluzzi AJ, Vencato I, Peralta RA, Szpoganicz B, Aires VVE, Terenzi H, Severino PC (2003) Inorg Chem Commun 6:1161–1165CrossRefGoogle Scholar
  14. 14.
    Lanznaster M, Neves A, Bortoluzzi AJ, Szpoganicz B, Schwingel E (2002) Inorg Chem 41:5641–5643CrossRefPubMedGoogle Scholar
  15. 15.
    Boudalis AK, Aston RE, Smith SJ, Mirams RE, Riley MJ, Schenk G, Blackman AG, Hanton LR, Gahan LR (2007) Dalton Trans 5132–5139Google Scholar
  16. 16.
    Merkx M, Averill BA (1998) Biochemistry 37:11223–11231CrossRefPubMedGoogle Scholar
  17. 17.
    Horn A, Vencato I, Bortoluzzi AJ, Horner R, Silva RAN, Szpoganicz B, Drago V, Terenzi H, de Oliveira MCB, Werner R, Haase W, Neves A (2005) Inorg Chim Acta 358:339–351CrossRefGoogle Scholar
  18. 18.
    Duboc-Toia C, Menage S, Vincent J-M, Averbuch-Pouchot MT, Fontecave M (1997) Inorg Chem 36:6148–6149CrossRefGoogle Scholar
  19. 19.
    Longhinotti E, Domingos JB, Szpoganicz B, Neves A, Nome F (2005) Inorg Chim Acta 358:2089–2092CrossRefGoogle Scholar
  20. 20.
    Parrilha GL, Fernandes C, Bortoluzzi AJ, Szpoganicz B, Silva MdS, Pich CT, Terenzi H, Horn A (2008) Inorg Chem Commun 11:643–647CrossRefGoogle Scholar
  21. 21.
    Verge F, Lebrun C, Fontecave M, Menage S (2003) Inorg Chem 42:499–507CrossRefPubMedGoogle Scholar
  22. 22.
    Liu C, Yu S, Li D, Liao Z, Sun X, Xu H (2002) Inorg Chem 41:913–922CrossRefPubMedGoogle Scholar
  23. 23.
    Neves A, Terenzi H, Horner R, Horn A, Szpoganicz B, Sugai J (2001) Inorg Chem Commun 4:388–391CrossRefGoogle Scholar
  24. 24.
    Neves A, Lanznaster M, Bortoluzzi AJ, Peralta RA, Casellato A, Castellano EE, Herrald P, Riley MJ, Schenk G (2007) J Am Chem Soc 129:7486–7487CrossRefPubMedGoogle Scholar
  25. 25.
    Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicsz B, Schenk G, Neves A, Gahan LR (2007) J Biol Inorg Chem 12:1207–1220CrossRefPubMedGoogle Scholar
  26. 26.
    Bunton CA, Farber SJ (1969) J Org Chem 34:767–772CrossRefGoogle Scholar
  27. 27.
    Systat Software (2006) SigmaPlot for Windows, version 10. Systat Software, San JoseGoogle Scholar
  28. 28.
    Binstead RA, Zuberbuhler AD (1993–1995) SPECFIT: a program for global least squares fitting of equilibria and kinetics systems using factor analysis and Marquardt minimization, version 2.09. Spectrum Software Associates, Chapel HillGoogle Scholar
  29. 29.
    Boudalis AK, Lalioti N, Spyroulias GA, Raptopoulou CP, Terzis A, Bousseksou A, Tangoulis V, Tuchagues J-P, Perlepes SP (2002) Inorg Chem 41:6474–6487CrossRefPubMedGoogle Scholar
  30. 30.
    Stibrany RT, Gorun SM (1990) Angew Chem 102:1195–1197CrossRefGoogle Scholar
  31. 31.
    Gorun SM, Stibrany RT, Lillo A (1998) Inorg Chem 37:836–837CrossRefGoogle Scholar
  32. 32.
    Purich DL, Allison RD (2000) Handbook of biochemical kinetics. Academic Press, San Diego, p 544Google Scholar
  33. 33.
    von Euler H, Josephson K, Myrback K (1924) Z Physiol Chem 134:39–49Google Scholar
  34. 34.
    Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley-Interscience, New YorkGoogle Scholar
  35. 35.
    Mitić N, Valizadeh M, Leung EWW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Arch Biochem Biophys 439:154–164CrossRefPubMedGoogle Scholar
  36. 36.
    Mulrooney S, Zakharian T, Schaller RA, Hausinger RP (2001) Arch Biochem Biophys 394:280–282CrossRefPubMedGoogle Scholar
  37. 37.
    Krajewska B, Ciurli S (2005) Plant Physiol Biochem 43:651–658CrossRefPubMedGoogle Scholar
  38. 38.
    Li D-F, Liao Z-R, Wei Y-G, Wang M, Chen W-X, Li W-K, Mao X-A (2003) Dalton Trans 2164–2169Google Scholar
  39. 39.
    Sung N, Kim T-Y (2006) Agric Chem Biotechnol 49:86–89Google Scholar
  40. 40.
    Twitchett MB, Schenk G, Aquino MAS, Yiu DTY, Lau TC, Sykes AG (2002) Inorg Chem 41:5787–5794CrossRefPubMedGoogle Scholar
  41. 41.
    Helm L, Merbach AE (2005) Chem Rev 105:1923–1959CrossRefPubMedGoogle Scholar
  42. 42.
    Tanaka L, Yamada S (1976) J Chem Soc Chem Commun 178–179Google Scholar
  43. 43.
    Grant M, Jordan R (1981) Inorg Chem 20:55–60CrossRefGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Anob Kantacha
    • 1
  • Rebecca Buchholz
    • 2
  • Sarah J. Smith
    • 2
  • Gerhard Schenk
    • 2
  • Lawrence R. Gahan
    • 2
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceThaksin UniversityMuangThailand
  2. 2.School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaAustralia

Personalised recommendations