Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 15, Issue 7, pp 1157–1169 | Cite as

Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure–activity relationship modeling

  • Paola Gramatica
  • Ester Papa
  • Mara Luini
  • Elena Monti
  • Marzia B. Gariboldi
  • Mauro Ravera
  • Elisabetta Gabano
  • Luca Gaviglio
  • Domenico Osella
Original Paper

Abstract

Several Pt(IV) complexes of the general formula [Pt(L)2(L′)2(L″)2] [axial ligands L are Cl, RCOO, or OH; equatorial ligands L′ are  two am(m)ine or one diamine; and equatorial ligands L″ are Cl or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure–activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, E p, and partition coefficient, log P o/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log P o/w or the number of secondary sp 3 carbon atoms) plus an electronic descriptor (E p, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV) → Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

Keywords

Platinum complexes Anticancer drug Cytotoxicity Quantitative structure–activity relationship analysis 

Notes

Acknowledgments

Financial support for this work was from the Regione Piemonte (CIPE 2006 project-code A 370 and Ricerca Sanitaria Finalizzata 2009) and the ATF Association (Alessandria, Italy). The research was carried out within the framework of the European Cooperation COST D39 (Metallo-Drug Design and Action) and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB, Bari, Italy).

Supplementary material

775_2010_676_MOESM1_ESM.pdf (200 kb)
Supplementary material (PDF 200 kb)

References

  1. 1.
    Lippert B (1999) Cisplatin—chemistry and biochemistry of a leading anticancer drug. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Kaufmann GB, Molayem E (1990) Platinum Met Rev 34:215–221Google Scholar
  3. 3.
    Rosenberg B, VanCamp L, Krigas T (1965) Nature 205:698–699CrossRefPubMedGoogle Scholar
  4. 4.
    Hall MD, Dolman RD, Hambley TW (2004) Metal complexes in tumor diagnosis and as anticancer agents. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 42. Dekker, New York, pp 298–322Google Scholar
  5. 5.
    Christian MC, Spriggs D, Tutsc KD, O’Rourke T, VonHoff DD, Jacob JL, Reed E (1991) In: Howell SB (ed) Platinum and other metal coordination compounds in cancer chemotherapy. Plenum Press, New York, pp 453–459Google Scholar
  6. 6.
    Bramwell VHC, Crowther D, O’Malley S, Swindell R, Johnson R, Cooper EH, Thatcher N, Howell A (1985) Cancer Treat Rep 69:409–416PubMedGoogle Scholar
  7. 7.
    Pawinski A, Crowther D, Keizer HJ, Voute PA, Somers R, van Glabbeke M, Lentz MA, van Oosterom AT (1999) Eur J Cancer 35:163–164CrossRefPubMedGoogle Scholar
  8. 8.
    Pasetto LM, D’Andrea MR, Brandes AA, Rossi E, Monfardini S (2006) Crit Rev Oncol Hematol 60:59–75CrossRefPubMedGoogle Scholar
  9. 9.
    Kozubík A, Vaculová A, Souček K, Vondráček J, Turánek J, Hofmanová J (2008) Met Based Drugs 417897. doi: 10.1155/2008/417897
  10. 10.
    Hall MD, Alderden RA, Zhang M, Beale PJ, Cai Z, Lai B, Stamp APJ, Hambley TW (2006) J Struct Biol 155:38–44CrossRefPubMedGoogle Scholar
  11. 11.
    Hall MD, Mellor HR, Callaghan R, Hambley TW (2007) J Med Chem 50:3403–3411CrossRefPubMedGoogle Scholar
  12. 12.
    Montaña AM, Batalla C (2009) Curr Med Chem 16:2235–2260CrossRefPubMedGoogle Scholar
  13. 13.
    Choi S, Filotto C, Bisanzo M, Delaney S, Lagasee D, Whitworth JL, Jusko A, Li CR, Wood NA, Willingham J, Schwenker A, Spaulding K (1998) Inorg Chem 37:2500–2504CrossRefGoogle Scholar
  14. 14.
    Hambley TW, Battle AR, Deacon GB, Lawrenz ET, Fallon GD, Gatehouse BM, Webster LK, Rainone S (1999) J Inorg Biochem 77:3–12CrossRefPubMedGoogle Scholar
  15. 15.
    Battle AR, Deacon GB, Dolman RC, Hambley TW (2002) Aust J Chem 55:699–704CrossRefGoogle Scholar
  16. 16.
    Talman EG, Kidani Y, Mohrmann L, Reedijk J (1998) Inorg Chim Acta 283:251–255CrossRefGoogle Scholar
  17. 17.
    Gibson D (2009) Dalton Trans 10681–10689Google Scholar
  18. 18.
    Fojo T, Farrell N, Ortuzar W, Tanimura H, Weinstein J, Myers TG (2005) Crit Rev Oncol Hematol 53:25–34CrossRefPubMedGoogle Scholar
  19. 19.
    Hall MD, Amjadi S, Zhang M, Beale PJ, Hambley TW (2004) J Inorg Biochem 98:1614–1624CrossRefPubMedGoogle Scholar
  20. 20.
    Heudi O, Mercier-Jobard S, Cailleux A, Allain P (1999) Biopharm Drug Dispos 20:107–116CrossRefPubMedGoogle Scholar
  21. 21.
    Dhara SC (1970) Indian J Chem 8:193–194Google Scholar
  22. 22.
    Giandomenico CM, Abrams MJ, Murrer BA, Vollano JF, Rheinheimer MI, Wyer SB, Bossard GE, Higgins JD III (1995) Inorg Chem 34:1015–1021CrossRefPubMedGoogle Scholar
  23. 23.
    Totani T, Aono K, Komura M (1985) Glycolic acid platinum complexes. US Patent 4,560,781, 24 Dec 1985Google Scholar
  24. 24.
    Peloso A (1983) J Chem Soc Dalton Trans 1285–1289Google Scholar
  25. 25.
    Barnes KR, Kutikov A, Lippard SJ (2004) Chem Biol 11:557–564CrossRefPubMedGoogle Scholar
  26. 26.
    Shamsuddin S, Santillan CC, Stark JL, Whitmire KH, Siddik ZH, Khokhar AR (1998) J Inorg Biochem 71:29–35CrossRefPubMedGoogle Scholar
  27. 27.
    Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Cancer Res 48:589–601PubMedGoogle Scholar
  28. 28.
    Hypercube (2000) HYPERCHEM 7.03 for Windows. Hypercube, GainesvilleGoogle Scholar
  29. 29.
    Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M (2008) DRAGON software for the calculation of molecular descriptors, version 5.5 for Windows. Talete, Milan. http://www.talete.mi.it/
  30. 30.
    Todeschini R, Consonni V, Mauri A, Pavan M (2003) In: Leardi, R (ed) Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks. Elsevier, Amsterdam, pp 141–167Google Scholar
  31. 31.
    Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M (2008) MOBY DIGS-models by descriptors in genetic selection, version 1.0 beta for Windows. Talete, Milan. http://www.talete.mi.it/
  32. 32.
    Lindgren F, Hansen B, Karcher W, Sjöström M, Eriksson L (1996) J Chemom 10:521–532CrossRefGoogle Scholar
  33. 33.
    Gramatica P (2007) QSAR Comb Sci 26:694–701CrossRefGoogle Scholar
  34. 34.
    Consonni V, Ballabio D, Todeschini R (2009) J Chem Inf Model 49:1669–1678CrossRefPubMedGoogle Scholar
  35. 35.
    Atkinson AC (1985) Plots, transformations and regression. Clarendon Press, OxfordGoogle Scholar
  36. 36.
    Reisner E, Arion VB, Keppler BK, Pombeiro AJL (2008) Inorg Chim Acta 361:1569–1583CrossRefGoogle Scholar
  37. 37.
    Lambert WJ (1993) J Chromatogr A 656:469–484CrossRefGoogle Scholar
  38. 38.
    Braumann T (1986) J Chromatogr 373:191–225CrossRefPubMedGoogle Scholar
  39. 39.
    Platts JA, Oldfield SP, Reif MM, Palmucci A, Gabano E, Osella D (2006) J Inorg Biochem 100:1199–1207CrossRefPubMedGoogle Scholar
  40. 40.
    Ali Khan SR, Huang S, Shamsuddin S, Inutsuka S, Whitmire KH, Siddik ZH, Khokhar AR (2000) Bioorg Med Chem 8:515–521CrossRefPubMedGoogle Scholar
  41. 41.
    Kelland LR, Murrer BA, Abel G, Giandomenico CM, Mistry P, Harrap KR (1992) Cancer Res 52:822–828PubMedGoogle Scholar
  42. 42.
    Nasal A, Siluk D, Kaliszan R (2003) Curr Med Chem 10:381–426PubMedGoogle Scholar
  43. 43.
    Hawkins DM (2004) J Chem Inf Comput Sci 44:1–12PubMedGoogle Scholar
  44. 44.
    Platts JA, Hibbs DE, Hambley TW, Hall MD (2001) J Med Chem 44:472–474CrossRefPubMedGoogle Scholar
  45. 45.
    Caron G, Ermondi G, Gariboldi MB, Monti E, Gabano E, Ravera M, Osella D (2009) ChemMedChem 4:1677–1685CrossRefPubMedGoogle Scholar
  46. 46.
    Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69–77CrossRefGoogle Scholar
  47. 47.
    Nemirovski A, Vinograd I, Takrouri K, Mijovilovich A, Rompel A, Gibson D (2010) Chem Commun 46:1842–1844CrossRefGoogle Scholar
  48. 48.
    Bryce NS, Zhang JZ, Whan RM, Yamamoto N, Hambley TW (2009) Chem Commun 2673–2675Google Scholar
  49. 49.
    Mellor HR, Snelling S, Hall MD, Modok S, Jaffar M, Hambley TW, Callaghan R (2005) Biochem Pharmacol 70:1137–1146CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Paola Gramatica
    • 1
  • Ester Papa
    • 1
  • Mara Luini
    • 1
  • Elena Monti
    • 2
  • Marzia B. Gariboldi
    • 2
  • Mauro Ravera
    • 3
  • Elisabetta Gabano
    • 3
  • Luca Gaviglio
    • 3
  • Domenico Osella
    • 3
  1. 1.QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Structural and Functional BiologyUniversità dell’InsubriaVareseItaly
  2. 2.Section of Pharmacology, Department of Structural and Functional BiologyUniversità dell’InsubriaBusto Arsizio (VA)Italy
  3. 3.Department of Environmental and Life SciencesUniversità del Piemonte Orientale “A. Avogadro”AlessandriaItaly

Personalised recommendations