JBIC Journal of Biological Inorganic Chemistry

, Volume 15, Issue 6, pp 929–941 | Cite as

Structure and spin density of ferric low-spin heme complexes determined with high-resolution ESEEM experiments at 35 GHz

  • Inés García-Rubio
  • George Mitrikas
Original Paper


The wide use of the heme group by nature is a consequence of its unusual “electronic flexibility.” Major changes in the electronic structure of this molecule can result from small perturbations in its environment. To understand the way the electronic distribution is dictated by the structure of the heme site, it is extremely important to have methods to reliably determine both of them. In this work we propose a way to obtain this information in ferric low-spin heme centers via the determination of g, A, and Q tensors of the coordinated nitrogens using electron spin echo envelope modulation experiments at Q-band microwave frequencies. The results for two bisimidazole heme model complexes, namely, PPIX(Im)2 and CPIII(Im)2, where PPIX is protoporphyrin IX, CPIII is coproporphyrin III, and Im is imidazole, selectively labeled with 15N on the heme or imidazole nitrogens are presented. The planes of the axial ligands were found to be parallel and oriented approximately along one of the N–Fe–N directions of the slightly ruffled porphyrin ring (approximately 10°). The spin density was determined to reside in an iron d orbital perpendicular to the heme plane and oriented along the other porphyrin N–Fe–N direction, perpendicular to the axial imidazoles. The benefit of the method presented here lies in the use of Q-band microwave frequencies, which improves the orientation selection, results in no/fewer combination lines in the spectra, and allows separation of the contributions of hyperfine and quadrupole interactions due to the fulfillment of the exact cancellation condition at g Z and the possibility of performing hyperfine decoupling experiments at the g X observer position. These experimental advantages make the interpretation of the spectra straightforward, which results in precise and reliable determination of the structure and spin distribution.


Low-spin heme Hyperfine sublevel correlation spectroscopy Heme protein Electron structure Ferric iron 



Coproporphyrin III


Continuous wave


Deadtime-free electron spin echo envelope modulation nuclear coherence-transfer echoes


Double quantum


Electron–nuclear double resonance


Electron paramagnetic resonance


Electron spin echo envelope modulation


Hyperfine sublevel correlation spectroscopy


Low spin


Protoporphyrin IX


Single quantum



This paper is dedicated to the memory of Arthur Schweiger, who could not see this work completed. The authors want to thank ETH Zürich and the Swiss National Science Foundation for financial support.

Supplementary material

775_2010_655_MOESM1_ESM.pdf (394 kb)
Supplementary material 1 (PDF 394 kb)


  1. 1.
    Milgrom LR (1997) The colours of life: an introduction to the chemistry of porphyrins and related compounds. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Moore GR, Pettigrew GW (1990) Cytochrome c. Evolutionary, structural and physicochemical aspects. Springer, BerlinGoogle Scholar
  3. 3.
    Walker FA (1999) Coord Chem Rev 185–186:471–535CrossRefGoogle Scholar
  4. 4.
    Bleaney B, Obrien MCM (1956) Proc Phys Soc Lond Sect B 69:1216–1230CrossRefGoogle Scholar
  5. 5.
    Griffith JS (1957) Nature 180:30–31CrossRefPubMedGoogle Scholar
  6. 6.
    Taylor CPS (1977) Biochim Biophys Acta 491:137–149PubMedGoogle Scholar
  7. 7.
    Garcia-Rubio I, Medina M, Cammack R, Alonso PJ, Martinez JI (2006) Biophys J 91:2250–2263CrossRefPubMedGoogle Scholar
  8. 8.
    Astashkin AV, Raitsimring AM, Walker FA (2001) J Am Chem Soc 123:1905–1913CrossRefPubMedGoogle Scholar
  9. 9.
    Fahnenschmidt M, Bittl R, Rau HK, Haehnel W, Lubitz W (2000) Chem Phys Lett 323:329–339CrossRefGoogle Scholar
  10. 10.
    Fahnenschmidt M, Rau HK, Bittl R, Haehnel W, Lubitz W (1999) Chem Eur J 5:2327–2334CrossRefGoogle Scholar
  11. 11.
    Lee HI, Dexter AF, Fann YC, Lakner FJ, Hager LP, Hoffman BM (1997) J Am Chem Soc 119:4059–4069CrossRefGoogle Scholar
  12. 12.
    Scholes CP, Falkovski KM, Chen S, Bank J (1986) J Am Chem Soc 108:1660–1671CrossRefGoogle Scholar
  13. 13.
    Vinck E, Van Doorslaer S (2004) Phys Chem Chem Phys 6:5324–5330CrossRefGoogle Scholar
  14. 14.
    Schunemann V, Raitsimring AM, Benda R, Trautwein AX, Shokireva TK, Walker FA (1999) J Biol Inorg Chem 4:708–716CrossRefPubMedGoogle Scholar
  15. 15.
    Astashkin AV, Raitsimring AM, Walker FA (1999) Chem Phys Lett 306:9–17CrossRefGoogle Scholar
  16. 16.
    Raitsimring AM, Walker FA (1998) J Am Chem Soc 120:991–1002CrossRefGoogle Scholar
  17. 17.
    Raitsimring AM, Borbat P, Shokhireva TK, Walker FA (1996) J Phys Chem 100:5235–5244CrossRefGoogle Scholar
  18. 18.
    Garcia-Rubio I, Martinez JI, Picorel R, Yruela IL, Alonso PJ (2003) J Am Chem Soc 125:15846–15854CrossRefPubMedGoogle Scholar
  19. 19.
    García-Rubio I, Alonso PJ, Medina M, Martínez JI (2009) Biophys J 96:141–152CrossRefPubMedGoogle Scholar
  20. 20.
    Alonso PJ, Martínez JI, García-Rubio I (2007) Coord Chem Rev 251:12–24CrossRefGoogle Scholar
  21. 21.
    Byrn MP, Katz BA, Keder NL, Levan KR, Magurany CJ, Miller KM, Pritt JW, Strouse CE (1983) J Am Chem Soc 105:4916–4922CrossRefGoogle Scholar
  22. 22.
    Shokhirev NV, Walker FA (1998) J Am Chem Soc 120:981–990CrossRefGoogle Scholar
  23. 23.
    Mitrikas G, Schweiger A (2004) J Magn Reson 168:88–96CrossRefPubMedGoogle Scholar
  24. 24.
    Van Doorslaer S, Schweiger A (1999) Chem Phys Lett 308:187–194CrossRefGoogle Scholar
  25. 25.
    Gromov I, Shane J, Forrer J, Rakhmatoullin R, Rozentzwaig Y, Schweiger A (2001) J Magn Reson 149:196–203CrossRefPubMedGoogle Scholar
  26. 26.
    Gromov I, Forrer J, Schweiger A (2006) Rev Sci Instrum 77:064704Google Scholar
  27. 27.
    Höfer P (1994) J Magn Reson Ser A 111:77–86CrossRefGoogle Scholar
  28. 28.
    Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Ponti A, Schweiger A (1995) J Chem Phys 102:5207–5219CrossRefGoogle Scholar
  30. 30.
    Madi ZL, Van Doorslaer S, Schweiger A (2002) J Magn Reson 154:181–191CrossRefPubMedGoogle Scholar
  31. 31.
    Spaeth JM, Niklas JR, Bartram RH (1992) Structural analysis of point defects in solids. An introduction to multiple resonance spectroscopy. Springer, BerlinGoogle Scholar
  32. 32.
    Brown TG, Hoffman BM (1980) Mol Phys 39:1073–1109CrossRefGoogle Scholar
  33. 33.
    Ashby CIH, Cheng CP, Brown TL (1978) J Am Chem Soc 100:6057–6063CrossRefGoogle Scholar
  34. 34.
    Johansson MP, Sundholm D, Gerfen G, Wilkström M (2002) J Am Chem Soc 124:11771–11780CrossRefPubMedGoogle Scholar
  35. 35.
    Little RG, Dymock KR, Ibers JA (1975) J Am Chem Soc 97:4532–4539CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  1. 1.Laboratory of Physical ChemistryETH ZürichZurichSwitzerland
  2. 2.Institute of Materials ScienceNCSR “Demokritos”AthensGreece

Personalised recommendations