JBIC Journal of Biological Inorganic Chemistry

, Volume 15, Issue 6, pp 879–888 | Cite as

Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase

  • Brandon R. Goblirsch
  • Bennett R. Streit
  • Jennifer L. DuBois
  • Carrie M. WilmotEmail author
Original Paper


Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO2 ) to Cl and O2. The ability of Cld to promote O2 formation from ClO2 is unusual. Heme enzymes generally utilize ClO2 as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO2 ) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO2 within the distal pocket generates hypochlorite (ClO) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO with compound I forming the Cl and O2 products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O2 may have a preferential direction for exiting the active site.


Heme Chlorite dismutase Crystal structure 



Asymmetric unit


Chlorite dismutase




Noncrystallographic symmetry


Protein Data Bank



This research was supported by the National Institutes of Health (R01 GM-66569 to C.M.W.; R03 ES-14390 and R01 GM-90260 to J.L.D.), and a Minnesota Partnership for Biotechnology and Medical Genomics grant SPAP-05-0013-P-FY06 to C.M.W. B.R.S. was supported by an Environmental Protection Agency STAR fellowship (FP-91690601-0). Computer resources were provided by the Basic Sciences Computing Laboratory of the University of Minnesota Supercomputing Institute, and we thank Can Ergenekan for his support. X-ray data were collected at the Kahlert Structural Biology Laboratory (KSBL) at The University of Minnesota and beamline 19-ID, Structural Biology Consortium–Collaborative Access Team, at the Advanced Photon Source, Argonne National Laboratory (Argonne, IL, USA). Argonne National Laboratory is operated by University of Chicago Argonne LLC for the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. We thank Ed Hoeffner for KSBL support and Steve Ginell and the staff at Sector 19, Advanced Photon Source, for their support.

Supplementary material

775_2010_651_MOESM1_ESM.pdf (309 kb)
Supplementary material 1 (PDF 309 kb)


  1. 1.
    Liu S, Suflita JM (1993) Trends Biotechnol 11:344–352CrossRefPubMedGoogle Scholar
  2. 2.
    Wackett LP (2004) J Biol Chem 279:41259–41262CrossRefPubMedGoogle Scholar
  3. 3.
    Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation : microbial transformation of organic compounds. ASM Press, WashingtonGoogle Scholar
  4. 4.
    Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) Science 308:1305–1308CrossRefPubMedGoogle Scholar
  5. 5.
    Oremland RS, Stolz JF (2003) Science 300:939–944CrossRefPubMedGoogle Scholar
  6. 6.
    Stolz JF, Basu P, Santini JM, Oremland RS (2006) Annu Rev Microbiol 60:107–130CrossRefPubMedGoogle Scholar
  7. 7.
    Narasingarao P, Haggblom MM (2007) Appl Environ Microbiol 73:3519–3527CrossRefPubMedGoogle Scholar
  8. 8.
    Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) J Biosci Bioeng 89:528–533CrossRefPubMedGoogle Scholar
  9. 9.
    Coates JD, Achenbach LA (2004) Nat Rev Microbiol 2:569–580CrossRefPubMedGoogle Scholar
  10. 10.
    Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Nature 411:1039–1043CrossRefPubMedGoogle Scholar
  11. 11.
    Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, Le Paslier D, Daims H (2008) Environ Microbiol 10:3043–3056CrossRefPubMedGoogle Scholar
  12. 12.
    Danielsson H, Stenklo TK, Karlsson J, Nilsson T (2003) Appl Environ Microbiol 69:5585–5592CrossRefGoogle Scholar
  13. 13.
    Kengen SWM, Rikken GB, Hagen WR, Van Ginkel CG, Stams AJM (1999) J Bacteriol 181:6706–6711PubMedGoogle Scholar
  14. 14.
    Okeke BC, Frankenberger WT Jr (2003) Microbiol Res 158:337–344CrossRefPubMedGoogle Scholar
  15. 15.
    O’Connor SM, Coates JD (2002) Appl Environ Microbiol 68:3108–3113CrossRefPubMedGoogle Scholar
  16. 16.
    Hewson WD, Hager LP (1979) J Biol Chem 254:3175–3181PubMedGoogle Scholar
  17. 17.
    Jakopitsch C, Spalteholz H, Furtmuller PG, Arnhold J, Obinger C (2008) J Inorg Biochem 102:293–302CrossRefPubMedGoogle Scholar
  18. 18.
    Shahangian S, Hager LP (1981) J Biol Chem 256:6034–6040PubMedGoogle Scholar
  19. 19.
    Hollenberg PF, Rand-Meir T, Hager LP (1974) J Biol Chem 249:5816–5825PubMedGoogle Scholar
  20. 20.
    George P (1953) J Biol Chem 201:413–426PubMedGoogle Scholar
  21. 21.
    Streit BR, DuBois JL (2008) Biochemistry 47:5271–5280CrossRefPubMedGoogle Scholar
  22. 22.
    Lee AQ, Streit, BR, Zdilla, M, Abu-Omar MA, DuBois JL (2008) Proc Natl Acad Sci USAGoogle Scholar
  23. 23.
    De Geus DC, Thomassen EA, Hagedoorn PL, Pannu NS, van Duijn E, Abrahams JP (2009) J Mol Biol 387:192–206CrossRefPubMedGoogle Scholar
  24. 24.
    Poulos TL (1993) Curr Opin Biotechnol 4:484–489CrossRefPubMedGoogle Scholar
  25. 25.
    Everse J, Everse KE, Grisham MB (eds) (1990) Peroxidases in chemistry and biology, vol 1. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Jones P, Dunford HB (1977) J Theor Biol 69:457–470CrossRefPubMedGoogle Scholar
  27. 27.
    Palcic MM, Dunford HB (1980) J Biol Chem 255:6128–6132PubMedGoogle Scholar
  28. 28.
    Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002) FEBS Lett 528:90–94CrossRefPubMedGoogle Scholar
  29. 29.
    Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622CrossRefPubMedGoogle Scholar
  30. 30.
    Savenkova MI, Kuo JM, Ortiz de Montellano PR (1998) Biochemistry 37:10828–10836CrossRefPubMedGoogle Scholar
  31. 31.
    Newmyer SL, Ortiz de Montellano PR (1995) J Biol Chem 270:19430–19438CrossRefPubMedGoogle Scholar
  32. 32.
    Hager LP, Doubek DL, Silverstein RM, Hargis JH, Martin JC (1972) J Am Chem Soc 94:4364–4366CrossRefPubMedGoogle Scholar
  33. 33.
    Araiso T, Rutter R, Palcic MM, Hager LP, Dunford HB (1981) Can J Biochem 59:233–236CrossRefPubMedGoogle Scholar
  34. 34.
    Bakkenist AR, de Boer JE, Plat H, Wever R (1980) Biochim Biophys Acta 613:337–348PubMedGoogle Scholar
  35. 35.
    Ullrich R, Hofrichter M (2007) Cell Mol Life Sci 64:271–293CrossRefPubMedGoogle Scholar
  36. 36.
    Toy PH, Newcomb M, Hager LP (1998) Chem Res Toxicol 11:816–823CrossRefPubMedGoogle Scholar
  37. 37.
    Jankowski JJ, Kieber DJ, Mopper K (1999) Photochem Photobiol 70:319–328CrossRefGoogle Scholar
  38. 38.
    Goblirsch BR, Streit BR, DuBois JL, Wilmot CM (2009) Acta Crystallogr Sect F Struct Biol Cryst Commun 65:818–821CrossRefPubMedGoogle Scholar
  39. 39.
    Collaborative Computational Project N (1994) Acta Crystallogr Sect D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  40. 40.
    Emsley P, Cowtan K (2004) Acta Crystallogr Sect D Biol Crystallogr 60:2126–2132CrossRefGoogle Scholar
  41. 41.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D Biol Crystallogr 53:240–255CrossRefGoogle Scholar
  42. 42.
    Winn MD, Isupov MN, Murshudov GN (2001) Acta Crystallogr Sect D Biol Crystallogr 57:122–133CrossRefGoogle Scholar
  43. 43.
    Ebihara A, Okamoto A, Kousumi Y, Yamamoto H, Masui R, Ueyama N, Yokoyama S, Kuramitsu S (2005) J Struct Funct Genomics 6:21–32CrossRefPubMedGoogle Scholar
  44. 44.
    Streit BR, Blanc B, Lukart-Rodgers GS, Rodgers KL, DuBois JL (2010) J Am Chem Soc (in press)Google Scholar
  45. 45.
    Yi J, Heinecke J, Tan H, Ford PC, Richter-Addo GB (2009) J Am Chem Soc 131(50):18119–18128CrossRefPubMedGoogle Scholar
  46. 46.
    Williams PA, Fulop V, Garman EF, Saunders NF, Ferguson SJ, Hajdu J (1997) Nature 389:406–412CrossRefPubMedGoogle Scholar
  47. 47.
    Yi J, Safo MK, Richter-Addo GB (2008) Biochemistry 47:8247–8249CrossRefPubMedGoogle Scholar
  48. 48.
    Valentine JS, Sheridan RP, Allen LC, Kahn PC (1979) Proc Natl Acad Sci USA 76:1009–1013CrossRefPubMedGoogle Scholar
  49. 49.
    Poulos TL, Fenna RE (1994) Met Ions Biol Syst 30:25–75Google Scholar
  50. 50.
    Candeias LP, Folkes LK, Wardman P (1997) Biochemistry 36:7081–7085CrossRefPubMedGoogle Scholar
  51. 51.
    Poulos TL, Finzel BC (1984) Pept Protein Rev 4:115–171Google Scholar
  52. 52.
    Rodriguez-Lopez JN, Smith AT, Thorneley RN (1996) J Biol Chem 271:4023–4030CrossRefPubMedGoogle Scholar
  53. 53.
    Rodriguez-Lopez JN, Smith AT, Thorneley RN (1997) J Biol Chem 272:389–395CrossRefPubMedGoogle Scholar
  54. 54.
    Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M (1998) Biochemistry 37:8054–8060CrossRefPubMedGoogle Scholar
  55. 55.
    Midda S, Das AK (2005) Theochem 713:101–106CrossRefGoogle Scholar
  56. 56.
    Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038CrossRefPubMedGoogle Scholar
  57. 57.
    Fita I, Rossmann MG (1985) J Mol Biol 185:21–37CrossRefPubMedGoogle Scholar
  58. 58.
    Smith AT, Veitch NC (1998) Curr Opin Chem Biol 2:269–278CrossRefPubMedGoogle Scholar
  59. 59.
    Ortiz de Montellano PR, Choe YS, DePillis G, Catalano CE (1987) J Biol Chem 262:11641–11646PubMedGoogle Scholar
  60. 60.
    Zdilla MJ, Lee AQ, Abu-Omar MM (2009) Inorg Chem 48:2260–2268CrossRefPubMedGoogle Scholar
  61. 61.
    Pelletier H, Kraut J (1992) Science 258:1748–1755CrossRefPubMedGoogle Scholar
  62. 62.
    Sivaraja M, Goodin DB, Smith M, Hoffman BM (1989) Science 245:738–740CrossRefPubMedGoogle Scholar
  63. 63.
    Bonagura CA, Bhaskar B, Shimizu H, Li H, Sundaramoorthy M, McRee DE, Goodin DB, Poulos TL (2003) Biochemistry 42:5600–5608CrossRefPubMedGoogle Scholar
  64. 64.
    Goodin DB, McRee DE (1993) Biochemistry 32:3313–3324CrossRefPubMedGoogle Scholar
  65. 65.
    Johnson BJ, Cohen J, Welford RW, Pearson AR, Schulten K, Klinman JP, Wilmot CM (2007) J Biol Chem 282:17767–17776CrossRefPubMedGoogle Scholar
  66. 66.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:282CrossRefGoogle Scholar
  67. 67.
    Cruikshank DW (2006) In: Rossmann MG, Arnold E (eds) International tables for crystallography. Springer, New York, pp 403–418Google Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Brandon R. Goblirsch
    • 1
  • Bennett R. Streit
    • 2
  • Jennifer L. DuBois
    • 2
  • Carrie M. Wilmot
    • 1
    Email author
  1. 1.Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations