JBIC Journal of Biological Inorganic Chemistry

, Volume 15, Issue 6, pp 841–850 | Cite as

Biological activity of enantiomeric complexes [PtCl2L2] (L2 is aromatic bisphosphanes and aromatic diamines)

  • Sophie Bombard
  • Marzia Bruna Gariboldi
  • Elena Monti
  • Elisabetta Gabano
  • Luca Gaviglio
  • Mauro Ravera
  • Domenico Osella
Original Paper


Enantiomeric complexes of formula [PtCl2L2] [L2 is (R)-(+)-BINAP and (S)-(−)-BINAP, where BINAP is 2,2′-bis(diphenylphosphane)-1,1′-binaphthyl, and (R)-(+)-DABN and (S)-(−)-DABN, where DABN is 1,1′-binaphthyl-2,2′-diamine], were tested for their cytotoxic activity against three cancer cell lines and for their ability to bind to the human telomeric sequence folded in the G-quadruplex structure. Similar experiments were carried out on prototypal complexes cisplatin and cis-[PtCl2(PPh3)2] for comparison. Platinum complexes containing phosphanes proved less cytotoxic to cancer cell lines and less likely to interact with the nucleobases of the G-quadruplex than those containing amines; in both cases the S-(−) isomer was more active than the R-(+) counterpart. More specifically, whereas all the platinum complexes were able to platinate the G-quadruplex structure from the human telomeric repeat, the extent and sites of platination depended on the nature of the ligands. Complexes containing (bulky) phosphanes interacted only with the adenines of the loops, whereas those containing the less sterically demanding amines interacted with adenines and some guanines of the G-quartet.


Platinum complexes Phosphanes and amines DNA quadruplex Telomere Cytotoxicity 



Financial support for this work was provided by the Regione Piemonte (CIPE project-code A 370 and Ricerca Sanitaria Finalizzata 2009), ATF Association (Alessandria, Italy), CNRS, and ARC 4835 (Paris, France). The study was carried out within the framework of the European Cooperation COST D39 (Metallo-Drug Design and Action) and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB, Bari, Italy). We are indebted to Cristina Prandi (University of Turin, Italy) for her assistance in measuring optical rotatory power.

Supplementary material

775_2010_648_MOESM1_ESM.pdf (304 kb)
Supplementary material (PDF 303 kb)


  1. 1.
    Rosenberg B, Van Camp L, Krigas T (1965) Nature 205:698–699CrossRefPubMedGoogle Scholar
  2. 2.
    Rosenberg B, Van Camp L, Trosko JE, Mansour VH (1969) Nature 222:385–386CrossRefPubMedGoogle Scholar
  3. 3.
    Kelland L (2007) Nat Rev Cancer 7:573–584CrossRefPubMedGoogle Scholar
  4. 4.
    Galanski M, Jakupec MA, Keppler BK (2005) Curr Med Chem 12:2075–2094CrossRefPubMedGoogle Scholar
  5. 5.
    Cleare MJ, Hoeschele JD (1973) Platinum Met Rev 17:2–13Google Scholar
  6. 6.
    Cleare MJ, Hoeschele JD (1973) Bioinorg Chem 2:187–210CrossRefGoogle Scholar
  7. 7.
    Cleare MJ (1974) Coord Chem Rev 12:349–405CrossRefGoogle Scholar
  8. 8.
    Roundhill DM (1987) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry, vol 5. Pergamon Press, Oxford, chap 52Google Scholar
  9. 9.
    Downing JH, Smith MB (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1. Elsevier, Oxford, p 253Google Scholar
  10. 10.
    Berners-Price SJ, Sadler PJ (1988) Struct Bond 70:27–102Google Scholar
  11. 11.
    Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Nucleic Acids Res 34:5402–5415CrossRefPubMedGoogle Scholar
  12. 12.
    Harley CB, Futcher AB, Greider CW (1990) Nature 345:458–460CrossRefPubMedGoogle Scholar
  13. 13.
    Hiyama K, Hiyama E, Shay JW (2009) In: Hiyama K (ed) Telomeres and telomerase in cancer. Humana Press, New York, chap 1Google Scholar
  14. 14.
    Parkinson GN, Lee MPH, Neidle S (2002) Nature 417:876–880CrossRefPubMedGoogle Scholar
  15. 15.
    Oganesian L, Bryan TM (2007) Bioessays 29:155–165CrossRefPubMedGoogle Scholar
  16. 16.
    Parkinson EK, Minty F (2007) Biodrugs 21:375–385CrossRefPubMedGoogle Scholar
  17. 17.
    Wong HM, Payet L, Huppert JL (2009) Curr Opin Mol Ther 11:146–155PubMedGoogle Scholar
  18. 18.
    De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL (2008) Biochimie 90:131–155CrossRefPubMedGoogle Scholar
  19. 19.
    Villanueva JM, Jia X, Yohannes PG, Doetsch PW, Marzilli LG (1999) Inorg Chem 38:6069–6080CrossRefPubMedGoogle Scholar
  20. 20.
    Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498CrossRefPubMedGoogle Scholar
  21. 21.
    Burger AM, Double JA, Newell DR (1997) Eur J Cancer 33:638–644CrossRefPubMedGoogle Scholar
  22. 22.
    Colangelo D, Osella D (2005) Curr Med Chem 12:3091–3102CrossRefPubMedGoogle Scholar
  23. 23.
    Ishibashi T, Lippard SJ (1998) Proc Natl Acad Sci USA 95:4219–4223CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang G, Zhang RP, Wang XN, Xie H (2002) Cell Res 12:55–62CrossRefPubMedGoogle Scholar
  25. 25.
    Furuta M, Nozawa K, Takemura M, Izuta S, Murate T, Tsuchiya M, Yoshida K, Taka N, Nimura Y, Yoshida S (2003) Int J Cancer 104:709–715CrossRefPubMedGoogle Scholar
  26. 26.
    Colangelo D, Ghiglia AL, Viano I, Cavigiolio G, Osella D (2003) Biometals 16:553–560CrossRefPubMedGoogle Scholar
  27. 27.
    Ma DL, Che CM, Yan SC (2009) J Am Chem Soc 131:1835–1846CrossRefPubMedGoogle Scholar
  28. 28.
    Redon S, Bombard S, Elizondo-Riojas MA, Chottard JC (2001) Biochemistry 40:8463–8470CrossRefPubMedGoogle Scholar
  29. 29.
    Redon S, Bombard S, Elizondo-Riojas MA, Chottard JC (2003) Nucleic Acids Res 31:1605–1613CrossRefPubMedGoogle Scholar
  30. 30.
    Ourliac-Garnier I, Elizondo-Riojas MA, Redon S, Farrell NP, Bombard S (2005) Biochemistry 44:10620–10634CrossRefPubMedGoogle Scholar
  31. 31.
    Ourliac-Garnier I, Bombard S (2007) J Inorg Biochem 101:514–524CrossRefPubMedGoogle Scholar
  32. 32.
    Heringova P, Kasparkova J, Brabec V (2009) J Biol Inorg Chem 14:959–968CrossRefPubMedGoogle Scholar
  33. 33.
    Monchaud D, Teulade-Fichou MP (2008) Org Biomol Chem 6:627–636CrossRefPubMedGoogle Scholar
  34. 34.
    Bertrand H, Bombard S, Monchaud D, Teulade-Fichou MP (2007) J Biol Inorg Chem 12:1003–1014CrossRefPubMedGoogle Scholar
  35. 35.
    Drew D, Doyle JR (1972) Inorg Synth 13:47–55CrossRefGoogle Scholar
  36. 36.
    Ravindar V, Schumann H, Hemling H, Blum J (1995) Inorg Chim Acta 240:145–152CrossRefGoogle Scholar
  37. 37.
    Strukul G (1997) J Mol Catal A 117:413–423CrossRefGoogle Scholar
  38. 38.
    Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Cancer Res 48:589–601PubMedGoogle Scholar
  39. 39.
    Bertrand H, Bombard S, Monchaud D, Talbot E, Guédin A, Mergny JL, Grünert R, Bednarski PJ, Teulade-Fichou MP (2009) Org Biomol Chem 7:2864–2871CrossRefPubMedGoogle Scholar
  40. 40.
    Miller B, Wild S, Zorbas H, Beck W (1999) Inorg Chim Acta 290:237–246CrossRefGoogle Scholar
  41. 41.
    Kollár L, Sándor P, Szalontai G (1991) J Mol Catal 67:191–198CrossRefGoogle Scholar
  42. 42.
    Barbaro P, Pregosin PS, Salzmann R, Albinati A, Kunz RW (1995) Organometallics 14:5160–5170CrossRefGoogle Scholar
  43. 43.
    Pregosin PS, Trabesinger G (1998) J Chem Soc Dalton Trans 727–734Google Scholar
  44. 44.
    Nama D, Schott D, Pregosin PS, Veiros LF, Calhorda MJ (2006) Organometallics 25:4596–4604CrossRefGoogle Scholar
  45. 45.
    Brunkan NM, Gagne MR (2002) Organometallics 21:4711–4717CrossRefGoogle Scholar
  46. 46.
    Nama D, Pregosin PS, Albinati A, Rizzato S (2007) Organometallics 26:2111–2121CrossRefGoogle Scholar
  47. 47.
    Pregosin PS (2008) Coord Chem Rev 252:2156–2170CrossRefGoogle Scholar
  48. 48.
    Fuss M, Siehl HU, Olenyuk B, Stang PJ (1999) Organometallics 18:758–769CrossRefGoogle Scholar
  49. 49.
    Fawcett J, Hope EG, Stuart AM, West AJ (2006) Polyhedron 25:1182–1186CrossRefGoogle Scholar
  50. 50.
    Doherty S, Knight JG, Smyth CH, Harrington RW, Clegg W (2006) J Org Chem 71:9751–9764CrossRefPubMedGoogle Scholar
  51. 51.
    Yoo J, Kim JH, Sohn YS, Do Y (1997) Inorg Chim Acta 263:53–60CrossRefGoogle Scholar
  52. 52.
    Kerrison SJS, Sadler PJ (1985) Inorg Chim Acta 104:197–201CrossRefGoogle Scholar
  53. 53.
    Di Pasqua AJ, Goodisman J, Kerwood DJ, Toms BB, Dubowy RL, Dabrowiak JC (2006) Chem Res Toxicol 19:139–149CrossRefPubMedGoogle Scholar
  54. 54.
    Neidle S (2009) Curr Opin Struct Biol 19:239–250CrossRefPubMedGoogle Scholar
  55. 55.
    Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML (1982) Science 216:475–485CrossRefPubMedGoogle Scholar
  56. 56.
    Lerman LS, Wilkerson LS, Venable JH (1976) J Mol Biol 108:271–293CrossRefPubMedGoogle Scholar
  57. 57.
    Kidani Y, Iigo M, Inagaki K, Hoshi A, Kuretani K (1978) J Med Chem 21:1315–1318CrossRefPubMedGoogle Scholar
  58. 58.
    Pendyala L, Kidani Y, Perez R, Wilkes J, Bernacki RJ, Creaven PJ (1995) Cancer Lett 97:177–184CrossRefPubMedGoogle Scholar
  59. 59.
    Benedetti M, Malina J, Kasparkova J, Brabec V, Natile G (2002) Environ Health Perspect 110:779–782PubMedGoogle Scholar
  60. 60.
    Vollano JF, Al-Baker S, Dabrowiak JC, Schurig JE (1987) J Med Chem 30:716–719CrossRefPubMedGoogle Scholar
  61. 61.
    Fanizzi FP, Intini FP, Maresca L, Natile G, Quaranata R, Coluccia M, Di Bari L, Giordano D, Mariggiò MA (1987) Inorg Chim Acta 137:45–51CrossRefGoogle Scholar
  62. 62.
    Bloemink MJ, Pérez JMJ, Heetebrij RJ, Reedijk J (1999) J Biol Inorg Chem 4:554–567CrossRefPubMedGoogle Scholar
  63. 63.
    Malina J, Hofr C, Maresca L, Natile G, Brabec V (2000) Biophys J 78:2008–2021CrossRefPubMedGoogle Scholar
  64. 64.
    Milanesio M, Monti E, Gariboldi MB, Gabano E, Ravera M, Osella D (2008) Inorg Chim Acta 361:2803–2814CrossRefGoogle Scholar
  65. 65.
    Yu H, Wang X, Fu M, Ren J, Qu X (2008) Nucleic Acids Res 36:5695–5703CrossRefPubMedGoogle Scholar
  66. 66.
    Yu H, Zhao C, Chen Y, Fu M, Ren J, Qu X (2010) J Med Chem 53:492–498CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  • Sophie Bombard
    • 1
    • 2
  • Marzia Bruna Gariboldi
    • 3
  • Elena Monti
    • 3
  • Elisabetta Gabano
    • 4
  • Luca Gaviglio
    • 4
  • Mauro Ravera
    • 4
  • Domenico Osella
    • 4
  1. 1.Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601Université Paris DescartesParisFrance
  2. 2.Laboratoire de l’Homéostasie Cellulaire et Cancer, INSERM UMR-S1007Université Paris DescartesParisFrance
  3. 3.Dipartimento di Biologia Strutturale e FunzionaleUniversità dell’InsubriaBusto Arsizio (VA)Italy
  4. 4.Dipartimento di Scienze dell’Ambiente e della VitaUniversità del Piemonte Orientale “Amedeo Avogadro”AlessandriaItaly

Personalised recommendations