CuA centers and their biosynthetic models in azurin

Minireview

Abstract

CuA is a binuclear copper center that functions as an electron transfer agent, cycling between a reduced Cu(I)Cu(I) state and an oxidized mixed-valence Cu(+1.5)···Cu(+1.5) state. The copper ions are bridged by two cysteine thiolate ligands and form a copper–copper bond, the first reported of its kind in Nature. Such a “diamond-core” Cu2S(Cys)2 structure allows an unpaired electron to be completely delocalized over the two copper ions and contributes to its highly efficient electron transfer properties. This review provides accounts of how the CuA center was structurally characterized and highlights its salient spectroscopic properties. In the process, it introduces the CuA center in four different systems—native protein systems, soluble protein truncates of native proteins, synthetic models using organic molecules, and biosynthetic models using proteins as ligands—with a greater emphasis on biosynthetic models of CuA, especially on new, deeper insights gained from their studies.

Keywords

Biosynthesis Electron transfer Protein engineering Cytochrome c oxidase 

Abbreviations

CcO

Cytochrome c oxidase

CD

Circular dichroism

CT

Charge transfer

CuA-Ami

CuA in amicyanin

CuA-Az

CuA in azurin

ENDOR

Electron–nuclear double resonance

EPR

Electron paramagnetic resonance

ET

Electron transfer

EXAFS

Extended X-ray absorption fine structure

HOMO

Highest occupied molecular orbital

MCD

Magnetic circular dichroism

MO

Molecular orbital

N2OR

Nitrous oxide reductase

RR

Resonance Raman

T1

Type 1

T2

Type 2

XAS

X-ray absorption spectroscopy

Notes

Acknowledgments

We wish to thank the US National Science Foundation and its Special Creativity Extension Award (award no. CHE 05-52008) for continued financial support. We would also like to thank other Lu group members for their intellectual contributions to work described in this review, Kyle D. Miner for help in modifying the figures, and Dewain K. Garner and Tiffany D. Wilson for their help in reference compilation and proof-reading.

References

  1. 1.
    Chan SI, Li PM (1990) Biochemistry 29:1–12PubMedGoogle Scholar
  2. 2.
    Ramirez BE, Malmström BG, Winkler JR, Gray HB (1995) Proc Natl Acad Sci USA 92:11949–11951PubMedGoogle Scholar
  3. 3.
    Ferguson-Miller S, Babcock GT (1996) Chem Rev 96:2889–2907PubMedGoogle Scholar
  4. 4.
    Ostermeier C, Michel H (1997) In: Winkelmann G, Carrano CJ (eds) Transition metals in microbial metabolism, Harwood Academic Publishers, Amsterdam pp 311–328Google Scholar
  5. 5.
    Wikstrom M (2004) Biochim Biophys Acta 1655:241–247PubMedGoogle Scholar
  6. 6.
    Zumft WG (1997) Microbiol Mol Biol Rev 61:533–616PubMedGoogle Scholar
  7. 7.
    Kern J, Biesiadka J, Loll B, Saenger W, Zouni A (2007) Photosynth Res 92:389–405PubMedGoogle Scholar
  8. 8.
    Suorsa M, Aro E-M (2007) Photosynth Res 93:89–100PubMedGoogle Scholar
  9. 9.
    Gray HB, Winkler JR (2001) In: Balzani V (ed) Electron transfer in chemistry, Vol 3. Wiley, Weinheim, pp 3–23Google Scholar
  10. 10.
    Solomon EI, Xie X, Dey A (2008) Chem Soc Rev 37:623–638PubMedGoogle Scholar
  11. 11.
    Beinert H, Holm RH, Munck E (1997) Science 277:653–659PubMedGoogle Scholar
  12. 12.
    Beinert H (2000) J Biol Inorg Chem 5:2–15PubMedGoogle Scholar
  13. 13.
    Moore GR, Pettigrew GW (eds) (1990) Cytochrome c: evolutionary, structural and physiological aspects. Springer, BerlinGoogle Scholar
  14. 14.
    Scott RA, Mauk AG (1996) Cytochrome c: a multidisciplinary approach. University Science Books, SausalitoGoogle Scholar
  15. 15.
    Gray HB, Solomon EI (1981) In: Spiro TG (ed) Copper proteins. Wiley, New York, pp 1–39Google Scholar
  16. 16.
    Farver O, Pecht I (1981) In: Spiro TG (ed) Copper proteins. Wiley, New York, pp 151–192Google Scholar
  17. 17.
    Gray HB, Malmström BG, Williams RJP (2000) J Biol Inorg Chem 5:551–559PubMedGoogle Scholar
  18. 18.
    Freeman HC, Guss JM (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, 2nd edn. Wiley, Chichester, pp 1153–1169Google Scholar
  19. 19.
    Kolczak U, Dennison C, Messerschmidt A, Canters GW (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, Wiley, Chichester, pp 1170–1194Google Scholar
  20. 20.
    Vila AJ, Fernández CO (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Dekker, New York, pp 813–856Google Scholar
  21. 21.
    Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (2004) Chem Rev 104:419–458PubMedGoogle Scholar
  22. 22.
    Lu Y (2003) In: Mccleverty J, Meyer TJ (eds) Comprehensive Coordination Chemistry II: from Biology to Nanotechnology, Vol 8, Que L Jr, Tolman WB (eds), Elsevier, Oxford, pp 91–122Google Scholar
  23. 23.
    Malmström BG, Aasa R (1993) FEBS Lett 325:49–52PubMedGoogle Scholar
  24. 24.
    Lappalainen P, Saraste M (1994) Biochim Biophys Acta Bioenerg 1187:222–225Google Scholar
  25. 25.
    Bertagnolli H, Kaim W (1995) Angew Chem Int Ed Engl 34:771–773Google Scholar
  26. 26.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Science 269:1069–1074PubMedGoogle Scholar
  27. 27.
    Dennison C, Canters GW (1996) Recl Trav Chim Pays-Bas 115:345–351Google Scholar
  28. 28.
    Beinert H (1997) Eur J Biochem 245:521–532PubMedGoogle Scholar
  29. 29.
    Randall DW, Gamelin DR, LaCroix LB, Solomon EI (2000) J Biol Inorg Chem 5:16–29PubMedGoogle Scholar
  30. 30.
    Sanders-Loehr J (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, pp 505–513Google Scholar
  31. 31.
    Kroneck PMH (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, Wiley, Chichester, pp 1333–1341Google Scholar
  32. 32.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669PubMedGoogle Scholar
  33. 33.
    Brown K, Tegoni M, Prudencio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C (2000) Nat Struct Biol 7:191–195PubMedGoogle Scholar
  34. 34.
    Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K (2003) Biochem J 369:77–88PubMedGoogle Scholar
  35. 35.
    Komorowski L, Anemuller S, Schafer G (2001) J Bioenerg Biomem 33:27–34Google Scholar
  36. 36.
    Lieberman RL, Arciero DM, Hooper AB, Rosenzweig AC (2001) Biochemistry 40:5674–5681PubMedGoogle Scholar
  37. 37.
    Arciero DM, Pierce BS, Hendrich MP, Hooper AB (2002) Biochemistry 41:1703–1709PubMedGoogle Scholar
  38. 38.
    Basumallick L, Sarangi R, DeBeer George S, Elmore B, Hooper AB, Hedman B, Hodgson KO, Solomon EI (2005) J Am Chem Soc 127:3531–3544PubMedGoogle Scholar
  39. 39.
    Solomon EI, Baldwin MJ, Lowery MD (1992) Chem Rev 92:521–542Google Scholar
  40. 40.
    Abolmaali B, Taylor HV, Weser U (1998) Struct Bond 91:91–190Google Scholar
  41. 41.
    Pascher T, Karlsson BG, Nordling M, Malmström BG, Vänngård T (1993) Eur J Biochem 212:289–296PubMedGoogle Scholar
  42. 42.
    Berry SM, Ralle M, Low DW, Blackburn NJ, Lu Y (2003) J Am Chem Soc 125:8760–8768PubMedGoogle Scholar
  43. 43.
    Dennison C (2005) J Chem Soc Dalton Trans 3436–3442Google Scholar
  44. 44.
    Garner DK, Vaughan MD, Hwang HJ, Savelieff MG, Berry SM, Honek JF, Lu Y (2006) J Am Chem Soc 128:15608–15617PubMedGoogle Scholar
  45. 45.
    Blackburn NJ, Barr ME, Woodruff WH, van der Oost J, de Vries S (1994) Biochemistry 33:10401–10407PubMedGoogle Scholar
  46. 46.
    Henkel G, Müller A, Weissgräber S, Buse G, Soulimane T, Steffens GCM, Nolting H-F (1995) Angew Chem Int Ed Engl 34:1488–1492Google Scholar
  47. 47.
    Andrew CR, Lappalainen P, Saraste M, Hay MT, Lu Y, Dennison C, Canters GW, Fee JA, Slutter CE, Nakamura N, Sanders-Loehr J (1995) J Am Chem Soc 117:10759–10760Google Scholar
  48. 48.
    Robin MB, Day P (1967) Adv Inorg Chem Radiochem 10:247–422Google Scholar
  49. 49.
    Gamelin DR, Randall DW, Hay MT, Houser RP, Mulder TC, Canters GW, de Vries S, Tolman WB, Lu Y, Solomon EI (1998) J Am Chem Soc 120:5246–5263Google Scholar
  50. 50.
    Neese F, Zumft WG, Antholine WE, Kroneck PMH (1996) J Am Chem Soc 118:8692–8699Google Scholar
  51. 51.
    Farrar JA, Neese F, Lappalainen P, Kroneck PMH, Saraste M, Zumft WG, Thomson AJ (1996) J Am Chem Soc 118:11501–11514Google Scholar
  52. 52.
    Kroneck PMH, Antholine WE, Koteich H, Kastrau DHW, Neese F, Zumft WG (1993) In: Karlin áKD, Tyeklár Z (eds) Bioinorganic chemistry of copper, Chapman & Hall, New York, NY pp 419–426Google Scholar
  53. 53.
    Antholine WE, Kastrau DHW, Steffens GCM, Buse G, Zumft WG, Kroneck PMH (1992) Eur J Biochem 209:875–881PubMedGoogle Scholar
  54. 54.
    Olsson MHM, Ryde U (2001) J Am Chem Soc 123:7866–7876PubMedGoogle Scholar
  55. 55.
    Blair DF, Ellis WR Jr, Wang H, Gray HB, Chan SI (1986) J Biol Chem 261:11524–11537PubMedGoogle Scholar
  56. 56.
    Immoos C, Hill MG, Sanders D, Fee JA, Slutter CE, Richards JH, Gray HB (1996) J Biol Inorg Chem 1:529–531Google Scholar
  57. 57.
    Bombelka E, Richter FW, Stroh A, Kadenbach B (1986) Biochem Biophys Res Commun 140:1007–1014PubMedGoogle Scholar
  58. 58.
    Steffens GCM, Biewald R, Buse G (1987) Eur J Biochem 164:295–300PubMedGoogle Scholar
  59. 59.
    Öblad M, Selin E, Malmström B, Strid L, Aasa R, Malmström BG (1989) Biochim Biophys Acta Bioenerg 975:267–270Google Scholar
  60. 60.
    Steffens GCM, Soulimane T, Wolff G, Buse G (1993) Eur J Biochem 213:1149–1157PubMedGoogle Scholar
  61. 61.
    Greenwood C, Hill BC, Barber D, Eglinton DG, Thomson AJ (1983) Biochem J 215:303–316PubMedGoogle Scholar
  62. 62.
    Thomson AJ, Greenwood C, Peterson J, Barrett CP (1986) J Inorg Biochem 28:195–205PubMedGoogle Scholar
  63. 63.
    Greenwood C, Thomson AJ, Barrett CP, Peterson J, George GN, Fee JA, Reichardt J (1988) Ann N Y Acad Sci 550:47–52PubMedGoogle Scholar
  64. 64.
    Froncisz W, Scholes CP, Hyde JS, Wei Y-H, King TE, Shaw RW, Beinert H (1979) J Biol Chem 254:7482–7484PubMedGoogle Scholar
  65. 65.
    Hoffman BM, Roberts JE, Swanson M, Speck SH, Margoliash E (1980) Proc Natl Acad Sci USA 77:1452–1456PubMedGoogle Scholar
  66. 66.
    Brudvig GW, Blair DF, Chan SI (1984) J Biol Chem 259:11001–11009PubMedGoogle Scholar
  67. 67.
    Lappalainen P, Aasa R, Malmström BG, Saraste M (1993) J Biol Chem 268:26416–26421PubMedGoogle Scholar
  68. 68.
    von Wachenfeldt C, de Vries S, van der Oost J (1994) FEBS Lett 340:109–113Google Scholar
  69. 69.
    Slutter CE, Sanders D, Wittung P, Malmström BG, Aasa R, Richards JH, Gray HB, Fee JA (1996) Biochemistry 35:3387–3395PubMedGoogle Scholar
  70. 70.
    Williams PA, Blackburn NJ, Sanders D, Bellamy H, Stura EA, Fee JA, McRee DE (1999) Nat Struct Biol 6:509–516PubMedGoogle Scholar
  71. 71.
    Song A-X, Li L-Z, Yu T, Chen S-M, Huang Z-X (2003) Protein Eng 16:435–441PubMedGoogle Scholar
  72. 72.
    Paumann M, Lubura B, Regelsberger G, Feichtinger M, Koellensberger G, Jakopitsch C, Furtmueller PG, Peschek GA, Obinger C (2004) J Biol Chem 279:10293–10303PubMedGoogle Scholar
  73. 73.
    van der Oost J, Lappalainen P, Musacchio A, Warne A, Lemieux L, Rumbley J, Gennis RB, Aasa R, Pascher T, Malmström BG, Saraste M (1992) EMBO J 11:3209–3217PubMedGoogle Scholar
  74. 74.
    Dennison C, Vijgenboom E, de Vries S, van der Oost J, Canters GW (1995) FEBS Lett 365:92–94PubMedGoogle Scholar
  75. 75.
    Hay M, Richards JH, Lu Y (1996) Proc Natl Acad Sci USA 93:461–464PubMedGoogle Scholar
  76. 76.
    Carrell CJ, Ma JK, Antholine WE, Hosler JP, Mathews FS, Davidson VL (2007) Biochemistry 46:1900–1912PubMedGoogle Scholar
  77. 77.
    Coyle CL, Zumft WG, Kroneck PMH, Koerner H, Jakob W (1985) Eur J Biochem 153:459–467PubMedGoogle Scholar
  78. 78.
    Snyder SW, Hollocher TC (1987) J Biol Chem 262:6515–6525PubMedGoogle Scholar
  79. 79.
    Kroneck PMH, Antholine WE, Riester J, Zumft WG (1988) FEBS Lett 242:70–74PubMedGoogle Scholar
  80. 80.
    Riester J, Zumft WG, Kroneck PMH (1989) Eur J Biochem 178:751–762PubMedGoogle Scholar
  81. 81.
    Farrar JA, Thomson AJ, Cheesman MR, Dooley DM, Zumft WG (1991) FEBS Lett 294:11–15PubMedGoogle Scholar
  82. 82.
    Viebrock A, Zumft WG (1988) J Bacteriol 170:4658–4668PubMedGoogle Scholar
  83. 83.
    Scott RA, Zumft WG, Coyle CL, Dooley DM (1989) Proc Natl Acad Sci USA 86:4082–4086PubMedGoogle Scholar
  84. 84.
    Zumft WG, Dreusch A, Loechelt S, Cuypers H, Friedrich B, Schneider B (1992) Eur J Biochem 208:31–40PubMedGoogle Scholar
  85. 85.
    Farrar JA, Zumft WG, Thomson AJ (1998) Proc Natl Acad Sci USA 95:9891–9896PubMedGoogle Scholar
  86. 86.
    Li PM, Gelles J, Chan SI, Sullivan RJ, Scott RA (1987) Biochemistry 26:2091–2095PubMedGoogle Scholar
  87. 87.
    Larsson S, Källebring B, Wittung P, Malmström BG (1995) Proc Natl Acad Sci USA 92:7167–7171PubMedGoogle Scholar
  88. 88.
    Farrar JA, Lappalainen P, Zumft WG, Saraste M, Thomson AJ (1995) Eur J Biochem 232:294–303PubMedGoogle Scholar
  89. 89.
    Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E, Saraste M (1995) Proc Natl Acad Sci USA 92:11955–11959PubMedGoogle Scholar
  90. 90.
    Robinson H, Ang MC, Gao Y-G, Hay MT, Lu Y, Wang AHJ (1999) Biochemistry 38:5677–5683PubMedGoogle Scholar
  91. 91.
    Brown K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JJG, Moura I, Tegoni M, Cambillau C (2000) J Biol Chem 275:41133–41136PubMedGoogle Scholar
  92. 92.
    Solomon EI, Randall DW, Glaser T (2000) Coord Chem Rev 200–202:595–632Google Scholar
  93. 93.
    Solomon EI (2006) Inorg Chem 45:8012–8025PubMedGoogle Scholar
  94. 94.
    Hay MT, Ang MC, Gamelin DR, Solomon EI, Antholine WE, Ralle M, Blackburn NJ, Massey PD, Wang X, Kwon AH, Lu Y (1998) Inorg Chem 37:191–198Google Scholar
  95. 95.
    Hulse CL, Averill BA (1990) Biochem Biophys Res Commun 166:729–735PubMedGoogle Scholar
  96. 96.
    Kelly M, Lappalainen P, Talbo G, Haltia T, van der Oost J, Saraste M (1993) J Biol Chem 268:16781–16787PubMedGoogle Scholar
  97. 97.
    Dooley DM, McGuirl MA, Rosenzweig AC, Landin JA, Scott RA, Zumft WG, Devlin F, Stephens PJ (1991) Inorg Chem 30:3006–3011Google Scholar
  98. 98.
    Dooley DM, Moog RS, Zumft WG (1987) J Am Chem Soc 109:6730–6735Google Scholar
  99. 99.
    Takahashi S, Ogura T, Shinzawa-Itoh K, Yoshikawa S, Kitagawa T (1993) Biochemistry 32:3664–3670PubMedGoogle Scholar
  100. 100.
    Andrew CR, Han J, de Vries S, van der Oost J, Averill BA, Loehr TM, Sanders-Loehr J (1994) J Am Chem Soc 116:10805–10806Google Scholar
  101. 101.
    Andrew CR, Fraczkiewicz R, Czernuszewicz RS, Lappalainen P, Saraste M, Sanders-Loehr J (1996) J Am Chem Soc 118:10436–10445Google Scholar
  102. 102.
    Stevens TH, Martin CT, Wang H, Brudvig GW, Scholes CP, Chan SI (1982) J Biol Chem 257:12106–12113PubMedGoogle Scholar
  103. 103.
    Gurbiel RJ, Fann YC, Surerus KK, Werst MM, Musser SM, Doan PE, Chan SI, Fee JA, Hoffman BM (1993) J Am Chem Soc 115:10888–10894Google Scholar
  104. 104.
    Kroneck PMH, Antholine WE, Kastrau DHW, Buse G, Steffens GCM, Zumft WG (1990) FEBS Lett 268:274–276PubMedGoogle Scholar
  105. 105.
    Pfenninger S, Antholine WE, Barr ME, Hyde JS, Kroneck PMH, Zumft WG (1995) Biophys J 69:2761–2769PubMedGoogle Scholar
  106. 106.
    Kroneck PMH, Riester J, Zumft WG, Antholine WE (1990) Biol Met 3:103–109PubMedGoogle Scholar
  107. 107.
    Neese F, Kappl R, Huttermann J, Zumft WG, Kroneck PMH (1998) J Biol Inorg Chem 3:53–67Google Scholar
  108. 108.
    Fee JA, Sanders D, Slutter CE, Doan PE, Aasa R, Karpefors M, Vänngård T (1995) Biochem Biophys Res Commun 212:77–83PubMedGoogle Scholar
  109. 109.
    Epel B, Slutter CE, Neese F, Kroneck PMH, Zumft WG, Pecht I, Farver O, Lu Y, Goldfarb D (2002) J Am Chem Soc 124:8152–8162PubMedGoogle Scholar
  110. 110.
    Harding C, McKee V, Nelson J (1991) J Am Chem Soc 113:9684–9685Google Scholar
  111. 111.
    Barr ME, Smith PH, Antholine WE, Spencer B (1993) J Chem Soc Chem Commun 1649–1652Google Scholar
  112. 112.
    Harding C, Nelson J, Symons MCR, Wyatt J (1994) J Chem Soc Chem Commun 2499–2500Google Scholar
  113. 113.
    Houser RP, Young VG Jr, Tolman WB (1996) J Am Chem Soc 118:2101–2102Google Scholar
  114. 114.
    LeCloux DD, Lippard SJ (1997) Inorg Chem 36:4035–4046Google Scholar
  115. 115.
    LeCloux DD, Davydov R, Lippard SJ (1998) Inorg Chem 37:6814–6826PubMedGoogle Scholar
  116. 116.
    LeCloux DD, Davydov R, Lippard SJ (1998) J Am Chem Soc 120:6810–6811Google Scholar
  117. 117.
    He C, Lippard SJ (2000) Inorg Chem 39:5225–5231PubMedGoogle Scholar
  118. 118.
    Harkins SB, Peters JC (2004) J Am Chem Soc 126:2885–2893PubMedGoogle Scholar
  119. 119.
    Bertini I, Turano P, Vila AJ (1993) Chem Rev 93:2833–2932Google Scholar
  120. 120.
    Bertini I, Luchinat C (1996) Coord Chem Rev 150:1–292Google Scholar
  121. 121.
    Lu Y, Gralla EB, Roe JA, Valentine JS (1992) J Am Chem Soc 114:3560–3562Google Scholar
  122. 122.
    Lu Y, Roe JA, Bender CJ, Peisach J, Banci L, Bertini I, Gralla EB, Valentine JS (1996) Inorg Chem 35:1692–1700PubMedGoogle Scholar
  123. 123.
    Bertini I, Bren KL, Clemente A, Fee JA, Gray HB, Luchinat C, Malmström BG, Richards JH, Sanders D, Slutter CE (1996) J Am Chem Soc 118:11658–11659Google Scholar
  124. 124.
    Dennison C, Berg A, de Vries S, Canters GW (1996) FEBS Lett 394:340–344PubMedGoogle Scholar
  125. 125.
    Dennison C, Berg A, Canters GW (1997) Biochemistry 36:3262–3269PubMedGoogle Scholar
  126. 126.
    Luchinat C, Soriano A, Djinovic-Carugo K, Saraste M, Malmström BG, Bertini I (1997) J Am Chem Soc 119:11023–11027Google Scholar
  127. 127.
    Salgado J, Warmerdam G, Bubacco L, Canters GW (1998) Biochemistry 37:7378–7389PubMedGoogle Scholar
  128. 128.
    Holz RC, Alvarez ML, Zumft WG, Dooley DM (1999) Biochemistry 38:11164–11171PubMedGoogle Scholar
  129. 129.
    Fernandez CO, Cricco JA, Slutter CE, Richards JH, Gray HB, Vila AJ (2001) J Am Chem Soc 123:11678–11685PubMedGoogle Scholar
  130. 130.
    Abriata LA, Ledesma GN, Pierattelli R, Vila AJ (2009) J Am Chem Soc 131:1939–1946PubMedGoogle Scholar
  131. 131.
    Hoitink CWG, Canters GW (1992) J Biol Chem 267:13836–13842PubMedGoogle Scholar
  132. 132.
    van Gastel M, Nagano Y, Zondervan R, Canters GW, Jeuken LJC, Warmerdam GCM, de Waal EC, Groenen EJJ (2002) J Phys Chem B 106:4018–4021Google Scholar
  133. 133.
    Yanagisawa S, Banfield MJ, Dennison C (2006) Biochemistry 45:8812–8822PubMedGoogle Scholar
  134. 134.
    Marshall NM, Garner DK, Wilson TD, Gao Y-G, Robinson H, Nilges MJ, Lu Y (2009) Nature 462:113–116PubMedGoogle Scholar
  135. 135.
    Gorelsky SI, Xie X, Chen Y, Fee JA, Solomon EI (2006) J Am Chem Soc 128:16452–16453PubMedGoogle Scholar
  136. 136.
    Scott RA, Schwartz JR, Cramer SP (1986) Biochemistry 25:5546–5555PubMedGoogle Scholar
  137. 137.
    Scott RA (1989) Ann Rev Biophys Biophys Chem 18:137–158Google Scholar
  138. 138.
    Blackburn NJ, de Vries S, Barr ME, Houser RP, Tolman WB, Sanders D, Fee JA (1997) J Am Chem Soc 119:6135–6143Google Scholar
  139. 139.
    Blackburn NJ, Fee JA, de Vries S, Lu Y, Dennison C, Canters GW (1997) In: Book of Abstracts, 213th ACS National Meeting, San Francisco, 13–17 April, INOR-360Google Scholar
  140. 140.
    Blackburn NJ, Ralle M, Sanders D, Fee JA, de DC, Vries S, Houser RP, Tolman WB, Hay MT, Lu Y (1998) In: Solomon EI, Hodgson KO (eds) Spectroscopic methods in bioinorganic chemistry. American Chemical Society, Washington, pp 241–250Google Scholar
  141. 141.
    Debeer George S, Metz M, Szilagyi RK, Wang H, Cramer SP, Lu Y, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2001) J Am Chem Soc 123:5757–5767Google Scholar
  142. 142.
    SooHoo CK, Hollocher TC, Kolodziej AF, Orme-Johnson WH, Bunker G (1991) J Biol Chem 266:2210–2218PubMedGoogle Scholar
  143. 143.
    Charnock JM, Dreusch A, Korner H, Neese F, Nelson J, Kannt A, Michel H, Garner CD, Kroneck PMH, Zumft WG (2000) Eur J Biochem 267:1368–1381PubMedGoogle Scholar
  144. 144.
    Blackburn NJ, Ralle M, Gomez E, Hill MG, Pastuszyn A, Sanders D, Fee JA (1999) Biochemistry 38:7075–7084PubMedGoogle Scholar
  145. 145.
    Williams KR, Gamelin DR, LaCroix LB, Houser RP, Tolman WB, Mulder TC, de Vries S, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:613–614Google Scholar
  146. 146.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144PubMedGoogle Scholar
  147. 147.
    Farver O, Lu Y, Ang MC, Pecht I (1999) Proc Natl Acad Sci USA 96:899–902PubMedGoogle Scholar
  148. 148.
    Wang H, Blair DF, Ellis WR Jr, Gray HB, Chan SI (1986) Biochemistry 25:167–171PubMedGoogle Scholar
  149. 149.
    Zickermann V, Wittershagen A, Kolbesen BO, Ludwig B (1997) Biochemistry 36:3232–3236PubMedGoogle Scholar
  150. 150.
    Prudencio M, Pereira AS, Tavares P, Besson S, Cabrito I, Brown K, Samyn B, Devreese B, Van Beeumen J, Rusnak F, Fauque G, Moura JJG, Tegoni M, Cambillau C, Moura I (2000) Biochemistry 39:3899–3907PubMedGoogle Scholar
  151. 151.
    Fujita K, Nakamura N, Ohno H, Leigh BS, Niki K, Gray HB, Richards JH (2004) J Am Chem Soc 126:13954–13961PubMedGoogle Scholar
  152. 152.
    Ledesma GN, Murgida DH, Ly HK, Wackerbarth H, Ulstrup J, Costa-Filho AJ, Vila AJ (2007) J Am Chem Soc 129:11884–11885PubMedGoogle Scholar
  153. 153.
    Hwang HJ, Ang MC, Lu Y (2004) J Biol Inorg Chem 9:489–494PubMedGoogle Scholar
  154. 154.
    Paraskevopoulos K, Antonyuk SV, Sawers RG, Eady RR, Hasnain SS (2006) J Mol Biol 362:55–65PubMedGoogle Scholar
  155. 155.
    Speno H, Taheri MR, Sieburth D, Martin CT (1995) J Biol Chem 270:25363–25369PubMedGoogle Scholar
  156. 156.
    Zickermann V, Verkhovsky M, Morgan J, Wikström M, Anemüller S, Bill E, Steffens GC, Ludwig B (1995) Eur J Biochem 234:686–693PubMedGoogle Scholar
  157. 157.
    Zhen Y, Schmidt B, Kang UG, Antholine W, Ferguson-Miller S (2002) Biochemistry 41:2288–2297PubMedGoogle Scholar
  158. 158.
    Wang K, Geren L, Zhen Y, Ma L, Ferguson-Miller S, Durham B, Millett F (2002) Biochemistry 41:2298–2304PubMedGoogle Scholar
  159. 159.
    Lappalainen P, Watmough NJ, Greenwood C, Saraste M (1995) Biochemistry 34:5824–5830PubMedGoogle Scholar
  160. 160.
    Slutter CE, Langen R, Sanders D, Lawrence SM, Wittung P, Di Bilio AJ, Hill MG, Fee JA, Richards JH (1996) Inorg Chim Acta 243:141–145Google Scholar
  161. 161.
    Maneg O, Ludwig B, Malatesta F (2003) J Biol Chem 278:46734–46740PubMedGoogle Scholar
  162. 162.
    Slutter CE, Gromov I, Richards JH, Pecht I, Goldfarb D (1999) J Am Chem Soc 121:5077–5078Google Scholar
  163. 163.
    Slutter CE, Gromov I, Epel B, Pecht I, Richards JH, Goldfarb D (2001) J Am Chem Soc 123:5325–5336PubMedGoogle Scholar
  164. 164.
    Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080PubMedGoogle Scholar
  165. 165.
    Lu Y (2005) Curr Opin Chem Biol 9:118–126PubMedGoogle Scholar
  166. 166.
    Lu Y (2006) Angew Chem Int Ed 45:5588–5601Google Scholar
  167. 167.
    Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Nature 460:855–862PubMedGoogle Scholar
  168. 168.
    Holm RH, Solomon EI (2004) Chem Rev 104:347–348PubMedGoogle Scholar
  169. 169.
    Farrar JA, McKee V, Al-Obaidi AHR, McGarvey JJ, Nelson J, Thomson AJ (1995) Inorg Chem 34:1302–1303Google Scholar
  170. 170.
    Farrar JA, Grinter R, Neese F, Nelson J, Thomson AJ (1997) J Chem Soc Dalton Trans 4083–4088Google Scholar
  171. 171.
    Al-Obaidi A, Baranovic G, Coyle J, Coates CG, McGarvey JJ, McKee V, Nelson J (1998) Inorg Chem 37:3567–3574PubMedGoogle Scholar
  172. 172.
    Coyle JL, Elias H, Herlinger E, Lange J, Nelson J (2001) J Biol Inorg Chem 6:285–291PubMedGoogle Scholar
  173. 173.
    Houser RP, Halfen JA, Young VG Jr, Blackburn NJ, Tolman WB (1995) J Am Chem Soc 117:10745–10746Google Scholar
  174. 174.
    Dance IG, Guerney PJ, Rae AD, Scudder ML (1983) Inorg Chem 22:2883–2887Google Scholar
  175. 175.
    Aoi N, Takano Y, Ogino H, Matsubayashi G, Tanaka T (1985) J Chem Soc Chem Commun 703–704Google Scholar
  176. 176.
    Aoi N, Matsubayashi G, Tanaka T (1987) J Chem Soc Dalton Trans 241–247Google Scholar
  177. 177.
    Garcia-Tojal J, Urtiaga MK, Cortes R, Lezama L, Arriortua MI, Rojo T (1994) J Chem Soc Dalton Trans 2233–2238Google Scholar
  178. 178.
    Stange AF, Waldhoer E, Moscherosch M, Kaim W (1995) Z Naturforsch B Chem Sci 50:115–122Google Scholar
  179. 179.
    Branscombe NDJ, Blake AJ, Marin-Becerra A, Li W-S, Parsons S, Ruiz-Ramirez L, Schroeder M (1996) Chem Commun 2573–2574Google Scholar
  180. 180.
    Itoh S, Nagagawa M, Fukuzumi S (2001) J Am Chem Soc 123:4087–4088PubMedGoogle Scholar
  181. 181.
    Ueno Y, Tachi Y, Itoh S (2002) J Am Chem Soc 124:12428–12429PubMedGoogle Scholar
  182. 182.
    Kotera T, Fujita A, Mikuriya M, Handa M (2003) Mater Sci 21:171–179Google Scholar
  183. 183.
    Brown EC, Aboelella NW, Reynolds AM, Aullon G, Alvarez S, Tolman WB (2004) Inorg Chem 43:3335–3337PubMedGoogle Scholar
  184. 184.
    Brown EC, Bar-Nahum I, York JT, Aboelella NW, Tolman WB (2007) Inorg Chem 46:486–496PubMedGoogle Scholar
  185. 185.
    Bar-Nahum I, York JT, Young VG Jr, Tolman WB (2008) Angew Chem Int Ed 47:533–536Google Scholar
  186. 186.
    Sarangi R, York JT, Helton ME, Fujisawa K, Karlin KD, Tolman WB, Hodgson KO, Hedman B, Solomon EI (2008) J Am Chem Soc 130:676–686PubMedGoogle Scholar
  187. 187.
    He C, Lippard SJ (2000) J Am Chem Soc 122:184–185Google Scholar
  188. 188.
    Fenton DE, Schroeder RR, Lintvedt RL (1978) J Am Chem Soc 100:1931–1932Google Scholar
  189. 189.
    Dunaj-Jurco M, Ondrejovic G, Melnik M, Garaj J (1988) Coord Chem Rev 83:1–28Google Scholar
  190. 190.
    Gupta R, Zhang ZH, Powell D, Hendrich MP, Borovik AS (2002) Inorg Chem 41:5100–5106PubMedGoogle Scholar
  191. 191.
    Savelieff MG, Lu Y (2008) Inorg Chim Acta 361:1087–1094Google Scholar
  192. 192.
    Uchida A, Kusano T, Mogi T, Anraku Y, Sone N (1997) J Biochem 122:1004–1009PubMedGoogle Scholar
  193. 193.
    Dennison C, Vijgenboom E, Hagen WR, Canters GW (1996) J Am Chem Soc 118:7406–7407Google Scholar
  194. 194.
    Jones LH, Liu A, Davidson VL (2003) J Biol Chem 278:47269–47274PubMedGoogle Scholar
  195. 195.
    Xie X, Gorelsky SI, Sarangi R, Garner DK, Hwang HJ, Hodgson KO, Hedman B, Lu Y, Solomon EI (2008) J Am Chem Soc 130:5194–5205PubMedGoogle Scholar
  196. 196.
    Lukoyanov D, Berry SM, Lu Y, Antholine WE, Scholes CP (2002) Biophys J 82:2758–2766PubMedGoogle Scholar
  197. 197.
    Wang X, Ang MC, Lu Y (1999) J Am Chem Soc 121:2947–2948Google Scholar
  198. 198.
    Hay MT, Lu Y (2000) J Biol Inorg Chem 5:699–712PubMedGoogle Scholar
  199. 199.
    Hay MT, Milberg RM, Lu Y (1996) J Am Chem Soc 118:11976–11977Google Scholar
  200. 200.
    Hwang HJ, Nagraj N, Lu Y (2006) Inorg Chem 45:102–107PubMedGoogle Scholar
  201. 201.
    Wang X, Berry SM, Xia Y, Lu Y (1999) J Am Chem Soc 121:7449–7450Google Scholar
  202. 202.
    Berry SM, Wang X, Lu Y (2000) J Inorg Biochem 78:89–95PubMedGoogle Scholar
  203. 203.
    Hwang HJ, Berry SM, Nilges MJ, Lu Y (2005) J Am Chem Soc 127:7274–7275PubMedGoogle Scholar
  204. 204.
    Farver O, Hwang HJ, Lu Y, Pecht I (2007) J Phys Chem B 111:6690–6694PubMedGoogle Scholar
  205. 205.
    Hwang HJ, Lu Y (2004) Proc Natl Acad Sci USA 101:12842–12847PubMedGoogle Scholar
  206. 206.
    Karpefors M, Adelroth P, Zhen Y, Ferguson-Miller S, Brzezinski P (1998) Proc Natl Acad Sci USA 95:13606–13611PubMedGoogle Scholar
  207. 207.
    Ambler RP (1999) J Chem Soc Pak 21:213–228Google Scholar
  208. 208.
    Ryden LG, Hunt LT (1993) J Mol Evol 36:41–66PubMedGoogle Scholar
  209. 209.
    Savelieff MG, Wilson TD, Elias Y, Nilges MJ, Garner DK, Lu Y (2008) Proc Natl Acad Sci USA 105:7919–7924PubMedGoogle Scholar
  210. 210.
    Abriata LA, Banci L, Bertini I, Ciofi-Baffoni S, Gkazonis P, Spyroulias GA, Vila AJ, Wang S (2008) Nat Chem Biol 4:599–601PubMedGoogle Scholar
  211. 211.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38Google Scholar

Copyright information

© SBIC 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of ChemistryMichigan State University DubaiDubaiUnited Arab Emirates

Personalised recommendations