Elucidation of insulin degrading enzyme catalyzed site specific hydrolytic cleavage of amyloid β peptide: a comparative density functional theory study

Original Paper

Abstract

In this B3LYP study, the catalytic mechanisms for the hydrolysis of the three different peptide bonds (Lys28-Gly29, Phe19-Phe20, and His14-Gln15) of Alzheimer amyloid beta (Aβ) peptide by insulin-degrading enzyme (IDE) have been elucidated. For all these peptides, the nature of the substrate was found to influence the structure of the active enzyme–substrate complex. The catalytic mechanism is proposed to proceed through the following three steps: (1) activation of the metal-bound water molecule, (2) formation of the gem-diol intermediate, and (3) cleavage of the peptide bond. With the computed barrier of 14.3, 18.8, and 22.3 kcal/mol for the Lys28-Gly29, Phe19-Phe20, and His14-Gln15 substrates, respectively, the process of water activation was found to be the rate-determining step for all three substrates. The computed energetics show that IDE is the most efficient in hydrolyzing the Lys28-Gly29 (basic polar–neutral nonpolar) peptide bond followed by the Phe19-Phe20 (neutral nonpolar–neutral nonpolar) and His14-Gln15 (basic polar–neutral polar) bonds of the Aβ substrate.

Keywords

Insulin-degrading enzyme Amyloid beta peptide Peptide hydrolysis Metallopeptidase Density functional theory 

Supplementary material

775_2009_617_MOESM1_ESM.pdf (366 kb)
Supplementary material (PDF 366 kb)

References

  1. 1.
    Wilcox DE (1996) Chem Rev 96:2435–2458CrossRefPubMedGoogle Scholar
  2. 2.
    Lowther WT, Matthews BW (2002) Chem Rev 102:4581–4608CrossRefPubMedGoogle Scholar
  3. 3.
    Song ES, Juliano MA, Juliano L, Hersh LB (2003) J Biol Chem 278:49789–49794CrossRefPubMedGoogle Scholar
  4. 4.
    Van Wart HE, Lin SH (1981) Biochemistry 20:5682CrossRefPubMedGoogle Scholar
  5. 5.
    Carpenter FH, Vahl JM (1973) J Biol Chem 248:294–304PubMedGoogle Scholar
  6. 6.
    Vallee BL, Auld DS (1993) Biochemistry 32:6493–6500CrossRefPubMedGoogle Scholar
  7. 7.
    Beynon R, Bond JS (eds) (2001) Proteolytic enzymes. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Duckworth WC, Bennett RG, Hamel FG (1998) Endocr Rev 19:608–624CrossRefPubMedGoogle Scholar
  9. 9.
    Kurochkin I (2001) Trends Biochem Sci 26:421–425CrossRefPubMedGoogle Scholar
  10. 10.
    Tseng BP, Esler WP, Clish CB, Stimson ER, Ghilardi JR, Vinters HV, Mantyh PW, Lee JP, Maggio JE (1999) Biochemistry 38:10424–10431CrossRefPubMedGoogle Scholar
  11. 11.
    Neant-Fery M, Ordoñez RD, Logan TP, Selkoe DJ, Li Lilin, Reinstatler L, Leissring MA (2008) Proc Natl Acad Sci USA 105:9582–9587CrossRefPubMedGoogle Scholar
  12. 12.
    Shen Y, Joachimiak A, Rosner MR, Tang W-J (2006) Nature 443:870–874CrossRefPubMedGoogle Scholar
  13. 13.
    Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun C-Y, Meredith SC, Sisodia SS, Leissering MA, Tang W-J (2007) J Biol Chem 282:25453–25463CrossRefPubMedGoogle Scholar
  14. 14.
    Malito E, Hulse RE, Tang W-J (2008) Cell Mol Life Sci 65:2574–2585CrossRefPubMedGoogle Scholar
  15. 15.
    Kurochkin I, Goto S (1994) FEBS Lett 345:33–37CrossRefPubMedGoogle Scholar
  16. 16.
    Kurochkin IV (1998) FEBS Lett 427:153–156CrossRefPubMedGoogle Scholar
  17. 17.
    Hardy J, Selkoe DJ (2002) Science 297:353–356CrossRefPubMedGoogle Scholar
  18. 18.
    Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) Biochem J 311:1–16PubMedGoogle Scholar
  19. 19.
    Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Nat Med 4:827–831CrossRefPubMedGoogle Scholar
  20. 20.
    Hersh LB (2006) Cell Mol Life Sci 63:2432–2434CrossRefPubMedGoogle Scholar
  21. 21.
    Turner AJ, Nalivaeva NN (2007) Int Rev Neurobiol 82:113–135CrossRefPubMedGoogle Scholar
  22. 22.
    Wang DS, Dickson DW, Malter JS (2006) J Biomed Biotechnol 2006:58406–58418PubMedGoogle Scholar
  23. 23.
    Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Nat Med 6:143–150CrossRefPubMedGoogle Scholar
  24. 24.
    Leissring MA (2008) J Biol Chem 283:29645–29649CrossRefPubMedGoogle Scholar
  25. 25.
    Qiu WQ, Folstein MF (2006) Neurobiol Aging 27:190–198CrossRefPubMedGoogle Scholar
  26. 26.
    Taubes G (2003) Science 301:40–41CrossRefPubMedGoogle Scholar
  27. 27.
    Li P, Kuo W-L, Yousef M, Rosner MR, Tang W-J (2006) Biochem Biophys Research Commun 343:1032–1037CrossRefGoogle Scholar
  28. 28.
    Becker AB, Roth RA (1992) Proc Natl Acad Sci USA 89:3835–3839CrossRefPubMedGoogle Scholar
  29. 29.
    Perlman RK, Rosner MR (1994) J Biol Chem 269:33140–33145PubMedGoogle Scholar
  30. 30.
    Matthews BW, Jansonius JN, Colman PM, Schoenborn BP, Dupourque D (1972) Nature 238:37–41CrossRefGoogle Scholar
  31. 31.
    Holland DR, Hausrath AC, Juers D, Matthews BW (1995) Protein Sci 4:1955–1965CrossRefPubMedGoogle Scholar
  32. 32.
    Pelmenschikov V, Blomberg MRA, Siegbahn PEM (2002) J Biol Inorg Chem 7:284–298CrossRefPubMedGoogle Scholar
  33. 33.
    Marino T, Russo N, Toscano M (2005) J Am Chem Soc 127:4242–4253CrossRefPubMedGoogle Scholar
  34. 34.
    Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69CrossRefGoogle Scholar
  35. 35.
    Antonczak S, Monard G, Ruiz-Lopez MF, Rivail JL (1998) J Am Chem Soc 120:8825–8833CrossRefGoogle Scholar
  36. 36.
    Antonczak S, Monard G, Ruiz-Lopez MF, Rivail JL (2000) J Mol Model 6:527–538CrossRefGoogle Scholar
  37. 37.
    Glades A, Vallee BL (1983) Metal ions in biological systems. Dekker, New YorkGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, WallingfordGoogle Scholar
  39. 39.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefPubMedGoogle Scholar
  40. 40.
    Becke ADJ (1993) Chem Phys 98:5648–5652Google Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  42. 42.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  43. 43.
    Siegbahn PEM (2003) Q Rev Biophys 36:91–145CrossRefPubMedGoogle Scholar
  44. 44.
    Amata O, Marino T, Russo N, Toscano M (2009) J Am Chem Soc. doi:10.1021/ja9037142
  45. 45.
    Himo F, Siegbahn PEM (2003) Chem Rev 103:2421–2456CrossRefPubMedGoogle Scholar
  46. 46.
    Siegbahn PEM (2006) J Biol Inorg Chem 11:695–701CrossRefPubMedGoogle Scholar
  47. 47.
    Noodleman L, Lovell T, Han W-G, Li J, Himo F (2004) Chem Rev 104:459–508CrossRefPubMedGoogle Scholar
  48. 48.
    Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  49. 49.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815CrossRefGoogle Scholar
  50. 50.
    Li QS, Xu XD, Zhang S (2004) Chem Phys Lett 384:20–24CrossRefGoogle Scholar
  51. 51.
    Lynch BJ, Truhlar DG (2001) J Phys Chem A 105:2936–2941CrossRefGoogle Scholar
  52. 52.
    Lingwood M, Hammond JR, Hrovat DA, Mayer JM, Borden WT (2006) J Chem Theory Comput 2:740–745CrossRefPubMedGoogle Scholar
  53. 53.
    Strassner T, Taige MA (2005) J Chem Theory Comput 1:848–855CrossRefGoogle Scholar
  54. 54.
    Singh R, Barman A, Prabhakar R (2009) J Phys Chem B 113:2990–2999CrossRefPubMedGoogle Scholar
  55. 55.
    Prabhakar R, Morokuma K, Musaev DG (2006) Biochemistry 45:6967–6977CrossRefPubMedGoogle Scholar
  56. 56.
    Siegbahn PEM, Tye JW, Hall MB (2007) Chem Rev 107:4414–4435CrossRefPubMedGoogle Scholar
  57. 57.
    Prabhakar R, Vreven T, Morokuma K, Musaev DG (2005) Biochemistry 44:11864–11871CrossRefPubMedGoogle Scholar
  58. 58.
    Morihara K, Hiroshige T (1970) Eur J Biochem 15:374–380CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  • Ram Prasad Bora
    • 1
  • Mehmet Ozbil
    • 1
  • Rajeev Prabhakar
    • 1
  1. 1.Department of ChemistryUniversity of MiamiCoral GablesUSA

Personalised recommendations