Rhodium(III) and iridium(III) complexes with 1,2-naphthoquinone-1-oximate as a bidentate ligand: synthesis, structure, and biological activity

  • Stefan Wirth
  • Christoph J. Rohbogner
  • Marcin Cieslak
  • Julia Kazmierczak-Baranska
  • Stefan Donevski
  • Barbara Nawrot
  • Ingo-Peter Lorenz
Original Paper

Abstract

The synthesis and characterization of three novel iridium(III) complexes and one rhodium(III) complex with 1-nitroso-2-naphthol (3) chelating as a 1,2-naphthoquinone-1-oximato ligand are described. The reaction of μ2-halogenido-bridged dimers [(η5-C5Me5)IrX2]2 [X is Cl (1a), Br (1b), I (1c)] and [(η5-C5Me5)RhCl2]2 (2a) with 3 in CH2Cl2 yields the mononuclear complexes (η5-C5Me5)IrX(η2-C10H6N2O) (4a, 4b, 4c) and (η5-C5Me5)RhCl(η2-C10H6N2O) (5a). All compounds were characterized by their 1H and 13C NMR, IR, and mass spectra, UV/vis spectra were recorded for 4a and 5a. The X-ray structure analyses revealed a pseudo-octahedral “piano-stool” configuration for the metals with bidentate coordination through oximato-N and naphthoquinone-O, forming a nearly planar five-membered metallacycle. The metal complexes 4a and 5a were evaluated in respect to their cytotoxicity and binding affinity toward double-stranded DNA. As determined in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, both exerted a much stronger cytotoxic effect toward HeLa and HL60 cancer cell lines than did cisplatin. The remarkable cytotoxicity of the compounds tested may be attributed to necrosis, rather than to apoptosis, as it is evidenced by the caspase-3/7 activation assay. No clear evidence was found for interaction with double-stranded DNA. The melting experiments showed no significant differences between thermodynamic parameters of intact DNA and DNA incubated with 3, 4a, or 5a, although these derivatives altered DNA recognition by the BamHI restriction enzyme. Therefore, the screened iridium and rhodium complexes 4a and 5a may still be interesting as potential anticancer drugs owing to their high cytotoxicity toward cancer cell lines, whereas they do not modify DNA in a way similar to that of cisplatin.

Keywords

Rhodium Iridium N,O chelate Cytotoxicity DNA binding 

Notes

Acknowledgments

Financial support from the Center for Integrated Protein Science Munich (CIPS, LMU Excellent) is gratefully acknowledged. The biological part of this work was done in the Anticancer Screening Laboratory in the Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences and was financially supported by the Ministry of Science and Higher Education through the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, under Decision PBZ-MNiSW-07/I/2007 for the years 2008–2010.

Supplementary material

775_2009_615_MOESM1_ESM.pdf (988 kb)
Supplementary material (PDF 989 kb)

References

  1. 1.
    Fuchs F (1875) Ber Dtsch Chem Ges 8(2):1022–1026CrossRefGoogle Scholar
  2. 2.
    Feigl F (1949) Chemistry of specific selective and sensitive reactions. Academic Press, New York, pp 251–280Google Scholar
  3. 3.
    Borggaard OK, Christensen HEM, Nielsen TK, Willems M (1982) Analyst 107(1281):1479–1483CrossRefGoogle Scholar
  4. 4.
    Borggaard OK, Christensen HEM, Lund SP (1984) Analyst 109(9):1179–1182CrossRefPubMedGoogle Scholar
  5. 5.
    Mendes PCS, Santelli RE, Gallego M, Valcárcel M (1994) J Anal At Spectrom 9(5):663–666Google Scholar
  6. 6.
    Zhang Q, Minami H, Inoue S, Atsuya I (2000) Anal Chim Acta 407(1–2):147–153CrossRefGoogle Scholar
  7. 7.
    Lee S-H, Choi H-S (2003) Bull Korean Chem Soc 24(11):1705–1707CrossRefGoogle Scholar
  8. 8.
    Novák J, Mleziva J, Eichler J (1984) Angew Makromol Chem 128(1):123–132CrossRefGoogle Scholar
  9. 9.
    Chakroborty KB, Scott G, Yaghmour H (1985) J Appl Polym Sci 30(1):189–203CrossRefGoogle Scholar
  10. 10.
    McKillop A, Sayer TSB (1976) J Org Chem 41(6):1079–1080CrossRefGoogle Scholar
  11. 11.
    Buckley RG, Charalambous J, Brain EG (1982) J Chem Soc Perkin Trans 1:1075–1078Google Scholar
  12. 12.
    Buckley RG, Charalambous J, Kensett MJ, McPartlin M, Mukerjee D, Brain EG, Jenkins J (1983) J Chem Soc Perkin Trans 1:693–697Google Scholar
  13. 13.
    Barjesteh H, Brain EG, Charalambous J, Gaganatsou P, Thomas TA (1995) J Chem Res Synop 454–454Google Scholar
  14. 14.
    Saarinen H, Korvenranta J (1975) Acta Chem Scand 29A:409–413CrossRefGoogle Scholar
  15. 15.
    Korvenranta J, Saarinen H (1975) Acta Chem Scand 29A:861–865CrossRefGoogle Scholar
  16. 16.
    Charalambous J, Henrick K, Musa Y, Rees RG, Whiteley RN (1987) Polyhedron 6(6):1509–1512CrossRefGoogle Scholar
  17. 17.
    Charalambous J, Stoten WC, Henrick K (1989) Polyhedron 8(1):103–107CrossRefGoogle Scholar
  18. 18.
    Lee KK-H, Wong W-T (1997) J Chem Soc Dalton Trans (17):2987–2996Google Scholar
  19. 19.
    Das AK, Rueda A, Falvello LR, Peng S-M, Bhattacharya S (1999) Inorg Chem 38(19):4365–4368CrossRefGoogle Scholar
  20. 20.
    Liu X-X, Wong W-T (2000) Polyhedron 19(1):7–21CrossRefGoogle Scholar
  21. 21.
    Liu X-X, Wong W-T (2000) Inorg Chim Acta 299(1):16–27CrossRefGoogle Scholar
  22. 22.
    Liu X-X, Wong W-T (2001) Inorg Chim Acta 312(1–2):231–238CrossRefGoogle Scholar
  23. 23.
    Krinninger C, Wirth S, Ruiz JCG, Klüfers P, Nöth H, Lorenz I-P (2005) Eur J Inorg Chem 20:4094–4098CrossRefGoogle Scholar
  24. 24.
    Liu X-X, Wong W-T (2001) Eur J Inorg Chem 2001(2):511–520CrossRefGoogle Scholar
  25. 25.
    Rosenberg B, Van Camp L, Krigas T (1965) Nature 205(4972):698–699CrossRefPubMedGoogle Scholar
  26. 26.
    Wong E, Giandomenico CM (1999) Chem Rev 99(9):2451–2466CrossRefPubMedGoogle Scholar
  27. 27.
    Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99(9):2511–2534CrossRefPubMedGoogle Scholar
  28. 28.
    Guo Z, Sadler PJ (1999) Angew Chem Int Ed 38(11):1512–1531CrossRefGoogle Scholar
  29. 29.
    Allardyce CS, Dorcier A, Scolaro C, Dyson PJ (2005) Appl Organomet Chem 19(1):1–10CrossRefGoogle Scholar
  30. 30.
    Guo Z, Sadler PJ, Sykes AG (1999) Adv Inorg Chem 49:183–306CrossRefGoogle Scholar
  31. 31.
    Di C, Milacic V, Frezza M, Ping Dou Q (2009) Curr Pharm Des 15(7):777–791CrossRefGoogle Scholar
  32. 32.
    Bruijnincx PCA, Sadler PJ (2008) Curr Opin Chem Biol 12(2):197–206CrossRefPubMedGoogle Scholar
  33. 33.
    Dyson PJ, Sava G (2006) Dalton Trans 16:1929–1933Google Scholar
  34. 34.
    Peacock AFA, Habtemariam A, Fernandez R, Walland V, Fabbiani FPA, Parsons S, Aird RE, Jodrell DI, Sadler PJ (2006) J Am Chem Soc 128(5):1739–1748CrossRefPubMedGoogle Scholar
  35. 35.
    Peacock AFA, Habtemariam A, Moggach SA, Prescimone A, Parsons S, Sadler PJ (2007) Inorg Chem 46(10):4049–4059CrossRefPubMedGoogle Scholar
  36. 36.
    Hillard E, Vessières A, Le Bideau F, Pla D, zdot, uk, Spera D, Huché M, Jaouen G (2006) ChemMedChem 1(5):551–559Google Scholar
  37. 37.
    Peacock Anna FA, Sadler Peter J (2008) Chem Asian J 3(11):1890–1899CrossRefPubMedGoogle Scholar
  38. 38.
    Pizarro AM, Sadler PJ (2009) Biochimie 91(10):1198–1211CrossRefPubMedGoogle Scholar
  39. 39.
    Bruijnincx PCA, Sadler PJ, Rudi van E, Colin DH (2009) Adv Inorg Chem 61:1–62Google Scholar
  40. 40.
    Allardyce CS, Dyson PJ (2001) Platin Met Rev 45(2):62–69Google Scholar
  41. 41.
    Clarke MJ (2003) Coord Chem Rev 236(1–2):209–233CrossRefGoogle Scholar
  42. 42.
    Habtemariam A, Melchart M, Fernandez R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ (2006) J Med Chem 49(23):6858–6868CrossRefPubMedGoogle Scholar
  43. 43.
    Ang WH, Dyson PJ (2006) Eur J Inorg Chem 20:4003–4018CrossRefGoogle Scholar
  44. 44.
    Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 38:4764–4776Google Scholar
  45. 45.
    Hartinger Christian G, Jakupec Michael A, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson Paul J, Keppler Bernhard K (2008) Chem Biodivers 5(10):2140–2155CrossRefPubMedGoogle Scholar
  46. 46.
    Bratsos I, Jedner S, Gianferrara T, Alessio E (2007) CHIMIA Int J Chem 61:692–697CrossRefGoogle Scholar
  47. 47.
    Katsaros N, Anagnostopoulou A (2002) Crit Rev Oncol Hematol 42(3):297–308CrossRefPubMedGoogle Scholar
  48. 48.
    Medvetz DA, Stakleff KD, Schreiber T, Custer PD, Hindi K, Panzner MJ, Blanco DD, Taschner MJ, Tessier CA, Youngs WJ (2007) J Med Chem 50(7):1703–1706CrossRefPubMedGoogle Scholar
  49. 49.
    Loganathan D, Morrison H (2006) Photochem Photobiol 82(1):237–247CrossRefPubMedGoogle Scholar
  50. 50.
    Sorasaenee K, Fu PKL, Angeles-Boza AM, Dunbar KR, Turro C (2003) Inorg Chem 42(4):1267–1271CrossRefPubMedGoogle Scholar
  51. 51.
    Smith DP, Olmstead MM, Noll BC, Maestre MF, Fish RH (1993) Organometallics 12(3):593–596CrossRefGoogle Scholar
  52. 52.
    Smith DP, Kohen E, Maestre MF, Fish RH (1993) Inorg Chem 32(19):4119–4122CrossRefGoogle Scholar
  53. 53.
    Smith DP, Griffin MT, Olmstead MM, Maestre MF, Fish RH (1993) Inorg Chem 32(22):4677–4678CrossRefGoogle Scholar
  54. 54.
    Smith DP, Baralt E, Morales B, Olmstead MM, Maestre MF, Fish RH (1992) J Am Chem Soc 114(26):10647–10649CrossRefGoogle Scholar
  55. 55.
    Herebian D, Sheldrick WS (2002) J Chem Soc Dalton Trans 6:966–974Google Scholar
  56. 56.
    Stodt R, Gencaslan S, Frodl A, Schmidt C, Sheldrick WS (2003) Inorg Chim Acta 355:242–253CrossRefGoogle Scholar
  57. 57.
    Gençaslan S, Sheldrick WS (2005) Eur J Inorg Chem 2005(19):3840–3849CrossRefGoogle Scholar
  58. 58.
    Schäfer S, Sheldrick WS (2007) J Organomet Chem 692(6):1300–1309CrossRefGoogle Scholar
  59. 59.
    Dorcier A, Ang WH, Bolano S, Gonsalvi L, Juillerat-Jeannerat L, Laurenczy G, Peruzzini M, Phillips AD, Zanobini F, Dyson PJ (2006) Organometallics 25(17):4090–4096CrossRefGoogle Scholar
  60. 60.
    Scharwitz MA, Ott I, Geldmacher Y, Gust R, Sheldrick WS (2008) J Organomet Chem 693(13):2299–2309CrossRefGoogle Scholar
  61. 61.
    Schäfer S, Ott I, Gust R, Sheldrick WS (2007) Eur J Inorg Chem 2007(19):3034–3046CrossRefGoogle Scholar
  62. 62.
    Ball RG, Graham WAG, Heinekey DM, Hoyano JK, McMaster AD, Mattson BM, Michel ST (1990) Inorg Chem 29(10):2023–2025CrossRefGoogle Scholar
  63. 63.
    Gill DS, Maitlis PM (1975) J Organomet Chem 87(3):359–364CrossRefGoogle Scholar
  64. 64.
    Kang JW, Moseley K, Maitlis PM (1969) J Am Chem Soc 91(22):5970–5977CrossRefGoogle Scholar
  65. 65.
    Sheldrick GM (1997) SHELX-97: an integrated system for solving and refining crystal structures from diffraction data. University of Göttingen, GermanyGoogle Scholar
  66. 66.
    Sheldrick GM (2008) Acta Crystallogr Sect A 64(1):112–122CrossRefGoogle Scholar
  67. 67.
    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) J Clin Invest 52(11):2745–2756CrossRefPubMedGoogle Scholar
  68. 68.
    Maszewska M, Leclaire J, Cieslak M, Nawrot B, Okruszek A, Caminade A-M, Majoral J-P (2003) Oligonucleotides 13(4):193–205CrossRefPubMedGoogle Scholar
  69. 69.
    Foretic B, Burger N, Hankonyi V (1995) Polyhedron 14(5):605–609CrossRefGoogle Scholar
  70. 70.
    Krzan A, Crist DR, Horák V (2000) J Mol Struct Theochem 528(1–3):237–244CrossRefGoogle Scholar
  71. 71.
    Ivanova G, Enchev V (2001) Chem Phys 264(3):235–244CrossRefGoogle Scholar
  72. 72.
    Gurrieri S, Siracusa G (1971) Inorg Chim Acta 5:650–654CrossRefGoogle Scholar
  73. 73.
    Burawoy A, Cais M, Chamberlain JT, Liversedge F, Thompson AR (1955) J Chem Soc 3727–3733Google Scholar
  74. 74.
    Saarinen H, Korvenranta J (1978) Finn Chem Lett 223–226Google Scholar
  75. 75.
    Farrugia LJ (1997) Ortep-3 for Windows. J Appl Cryst 30:565Google Scholar
  76. 76.
    Budzisz E, Krajewska U, Rozalski M, Szulawska A, Czyz M, Nawrot B (2004) Eur J Pharmacol 502(1–2):59–65CrossRefPubMedGoogle Scholar
  77. 77.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cell 91(4):479–489CrossRefPubMedGoogle Scholar
  78. 78.
    Jordan P, Carmo-Fonseca M (2000) Cell Mol Life Sci 57(8–9):1229–1235CrossRefPubMedGoogle Scholar
  79. 79.
    Richards AD, Rodger A (2007) Chem Soc Rev 36(3):471–483CrossRefPubMedGoogle Scholar
  80. 80.
    Zhou L (2009) J Phys Chem B 113(7):2110–2127CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  • Stefan Wirth
    • 1
  • Christoph J. Rohbogner
    • 1
  • Marcin Cieslak
    • 2
  • Julia Kazmierczak-Baranska
    • 2
  • Stefan Donevski
    • 2
  • Barbara Nawrot
    • 2
  • Ingo-Peter Lorenz
    • 1
  1. 1.Department of Chemistry and BiochemistryLudwig-Maximilian University MunichMunichGermany
  2. 2.Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular StudiesPolish Academy of SciencesLodzPoland

Personalised recommendations