The manganese/iron-carboxylate proteins: what is what, where are they, and what can the sequences tell us?

Original Paper


The manganese/iron-carboxylate proteins make up a recently discovered group of proteins that contain a heterodinuclear Mn/Fe redox cofactor. The chemical potential of the heterodinuclear metal site is just starting to be characterized, but available data suggest that it may have capabilities for similarly versatile chemistry as the extensively studied diiron-carboxylate cofactor. The presently identified members of the manganese/iron-carboxylate proteins are all sequence homologues of the radical-generating R2 subunit of class I ribonucleotide reductase, canonically a diiron protein. They are also commonly misannotated as such in databases. In spite of the sequence similarity, the manganese/iron-carboxylate proteins form at least two functionally distinct groups, radical-generating ribonucleotide reductase subunits and ligand-binding Mn/Fe proteins. Here, the presently available sequences for the manganese/iron-carboxylate proteins are gathered, grouped, and analyzed. The analysis provides sequence determinants that allow group identification of new sequences on the single-protein level. Key differences between the groups are mapped on the known representative structures, providing clues to the structural prerequisites for metal specificity, cofactor formation, and difference in function. The organisms that encode manganese/iron-carboxylate proteins are briefly discussed; their environmental preference suggests that the Mn/Fe heterodinuclear cofactor is preferred by extremophiles and pathogens with a particularly high relative presence in Archaea.


Heterodinuclear Metal specificity Redox tuning Oxygenase Reductase 



Britt-Marie Sjöberg is gratefully acknowledged for discussions and comments on the manuscript. This work was supported by grants from the Swedish Research Council, the Swedish Foundation for Strategic Research, and the Knut and Alice Wallenberg foundation.

Supplementary material

775_2009_606_MOESM1_ESM.pdf (543 kb)
Supplementary Figures (PDF 543 kb)


  1. 1.
    Nordlund P, Eklund H (1995) Curr Opin Struct Biol 5:758–766CrossRefPubMedGoogle Scholar
  2. 2.
    Leahy JG, Batchelor PJ, Morcomb SM (2003) FEMS Microbiol Rev 27:449–479CrossRefPubMedGoogle Scholar
  3. 3.
    Shu L, Nesheim JC, Kauffmann K, Münck E, Lipscomb JD, Que L (1997) Science 24:515–518CrossRefGoogle Scholar
  4. 4.
    Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Nature 366:537–543CrossRefPubMedGoogle Scholar
  5. 5.
    Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ (2001) Angew Chem Int Ed 40:2782–2807CrossRefGoogle Scholar
  6. 6.
    Murray LJ, Naik SG, Ortillo DO, Garcia-Serres R, Lee JK, Huynh BH, Lippard SJ (2007) J Am Chem Soc 129:14500–14510CrossRefPubMedGoogle Scholar
  7. 7.
    Sazinsky MH, Lippard SJ (2006) Acc Chem Res 39:558–566CrossRefPubMedGoogle Scholar
  8. 8.
    Coleman NV, Bui NB, Holmes AJ (2006) Environ Microbiol 8:1228–1239CrossRefPubMedGoogle Scholar
  9. 9.
    Lippard SJ (2005) Philos Trans A Math Phys Eng Sci 363:861–877CrossRefGoogle Scholar
  10. 10.
    Jordan A, Reichard P (1998) Annu Rev Biochem 67:71–98CrossRefPubMedGoogle Scholar
  11. 11.
    Sjöberg BM (1997) Struct Bond 88:139–173Google Scholar
  12. 12.
    Stubbe J (2003) Curr Opin Chem Biol 7:183–188CrossRefPubMedGoogle Scholar
  13. 13.
    Nordlund P, Reichard P (2006) Annu Rev Biochem 75:681–706CrossRefPubMedGoogle Scholar
  14. 14.
    Baldwin J, Voegtli WC, Khidekel N, Moenne-Loccoz P, Krebs C, Pereira AS, Ley BA, Huynh BH, Loehr TM, Riggs-Gelasco PJ, Rosenzweig AC, Bollinger JM (2001) J Am Chem Soc 123:7017–7030CrossRefPubMedGoogle Scholar
  15. 15.
    Parkin SE, Chen SX, Ley BA, Mangravite L, Edmondson DE, Huynh BH, Bollinger JM (1998) Biochemistry 37:1124–1130CrossRefPubMedGoogle Scholar
  16. 16.
    Assarsson M, Andersson ME, Hogbom M, Persson BO, Sahlin M, Barra AL, Sjoberg BM, Nordlund P, Graslund A (2001) J Biol Chem 276:26852–26859CrossRefPubMedGoogle Scholar
  17. 17.
    Roshick C, Iliffe-Lee ER, McClarty G (2000) J Biol Chem 275:38111–38119CrossRefPubMedGoogle Scholar
  18. 18.
    Högbom M, Stenmark P, Voevodskaya N, McClarty G, Gräslund A, Nordlund P (2004) Science 305:245–248CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang W, Yun D, Saleh L, Barr EW, Xing G, Hoffart LM, Maslak MA, Krebs C, Bollinger JM Jr (2007) Science 316:1188–1191CrossRefPubMedGoogle Scholar
  20. 20.
    Voevodskaya N, Lendzian F, Ehrenberg A, Graslund A (2007) FEBS Lett 581:3351–3355CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang W, Xie J, Norgaard H, Bollinger JM Jr, Krebs C (2008) Biochemistry 47:4477–4483CrossRefPubMedGoogle Scholar
  22. 22.
    Andersson CS, Högbom M (2009) Proc Natl Acad Sci USA 106:5633–5638CrossRefPubMedGoogle Scholar
  23. 23.
    Stubbe J, Nocera DG, Yee CS, Chang MCY (2003) Chem Rev 103:2167–2201CrossRefPubMedGoogle Scholar
  24. 24.
    Jiang W, Saleh L, Barr EW, Xie J, Gardner MM, Krebs C, Bollinger JM Jr (2008) Biochemistry 47:8477–8484CrossRefPubMedGoogle Scholar
  25. 25.
    Lindqvist Y, Huang WJ, Schneider G, Shanklin J (1996) EMBO J 15:4081–4092PubMedGoogle Scholar
  26. 26.
    Roos K, Siegbahn PE (2009) Biochemistry 48:1878–1887CrossRefPubMedGoogle Scholar
  27. 27.
    Bollinger JM Jr, Jiang W, Green MT, Krebs C (2008) Curr Opin Struct Biol 18:650–657CrossRefPubMedGoogle Scholar
  28. 28.
    Choi YS, Zhang H, Brunzelle JS, Nair SK, Zhao H (2008) Proc Natl Acad Sci USA 105:6858–6863CrossRefPubMedGoogle Scholar
  29. 29.
    Krebs C, Matthews ML, Jiang W, Bollinger JM Jr (2007) Biochemistry 46:10413–10418CrossRefPubMedGoogle Scholar
  30. 30.
    Zocher G, Winkler R, Hertweck C, Schulz GE (2007) J Mol Biol 373:65–74CrossRefPubMedGoogle Scholar
  31. 31.
    Högbom M, Galander M, Andersson M, Kolberg M, Hofbauer W, Lassmann G, Nordlund P, Lendzian F (2003) Proc Natl Acad Sci USA 100:3209–3214CrossRefPubMedGoogle Scholar
  32. 32.
    Nordlund P, Sjöberg B-M, Eklund H (1990) Nature 345:593–598CrossRefPubMedGoogle Scholar
  33. 33.
    Jiang W, Hoffart LM, Krebs C, Bollinger JM Jr (2007) Biochemistry 46:8709–8716CrossRefPubMedGoogle Scholar
  34. 34.
    Popovic-Bijelic A, Voevodskaya N, Domkin V, Thelander L, Graslund A (2009) Biochemistry 48:6532–6539CrossRefPubMedGoogle Scholar
  35. 35.
    Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  36. 36.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) Bioinformatics 21:3433–3434CrossRefPubMedGoogle Scholar
  37. 37.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) J Mol Biol 347:827–839CrossRefPubMedGoogle Scholar
  38. 38.
    McGuffin LJ, Bryson K, Jones DT (2000) Bioinformatics 16:404–405CrossRefPubMedGoogle Scholar
  39. 39.
    Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) Nucleic Acids Res 36:D281–D288CrossRefPubMedGoogle Scholar
  40. 40.
    Emsley P, Cowtan K (2004) Acta Crystallogr D 60:2126–2132CrossRefPubMedGoogle Scholar
  41. 41.
    Högbom M, Andersson ME, Nordlund P (2001) J Biol Inorg Chem 6:315–323CrossRefPubMedGoogle Scholar
  42. 42.
    Logan DT, deMaré F, Persson BO, Slaby A, Sjöberg BM, Nordlund P (1998) Biochemistry 37:10798–10807CrossRefPubMedGoogle Scholar
  43. 43.
    Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) J Bacteriol 187:4992–4999CrossRefPubMedGoogle Scholar
  44. 44.
    Notomista E, Lahm A, Di Donato A, Tramontano A (2003) J Mol Evol 56:435–445CrossRefPubMedGoogle Scholar
  45. 45.
    Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A (2005) Res Microbiol 156:677–689CrossRefPubMedGoogle Scholar
  46. 46.
    Chae JC, Kim E, Bini E, Zylstra GJ (2007) Biochem Biophys Res Commun 357:815–819CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  1. 1.Arrhenius Laboratories for Natural Sciences C4, Department of Biochemistry and Biophysics, Stockolm Center for Biomembrane ResearchStockholm UniversityStockholmSweden

Personalised recommendations