Structure at 1.0 Å resolution of a high-potential iron–sulfur protein involved in the aerobic respiratory chain of Rhodothermus marinus

  • Meike Stelter
  • Ana M. P. Melo
  • Gudmundur O. Hreggvidsson
  • Sigridur Hjorleifsdottir
  • Lígia M. Saraiva
  • Miguel Teixeira
  • Margarida ArcherEmail author
Original Paper


The aerobic respiratory chain of the thermohalophilic bacterium Rhodothermus marinus, a nonphotosynthetic organism from the Bacteroidetes/Chlorobi group, contains a high-potential iron–sulfur protein (HiPIP) that transfers electrons from a bc 1 analog complex to a caa 3 oxygen reductase. Here, we describe the crystal structure of the reduced form of R. marinus HiPIP, solved by the single-wavelength anomalous diffraction method, based on the anomalous scattering of the iron atoms from the [4Fe–4S]3+/2+ cluster and refined to 1.0 Å resolution. This is the first structure of a HiPIP isolated from a nonphotosynthetic bacterium involved in an aerobic respiratory chain. The structure shows a similar environment around the cluster as the other HiPIPs from phototrophic bacteria, but reveals several features distinct from those of the other HiPIPs of phototrophic bacteria, such as a different fold of the N-terminal region of the polypeptide due to a disulfide bridge and a ten-residue-long insertion.


High-potential iron–sulfur protein Crystal structure Rhodothermus marinus Electron transfer chain 



High-potential iron–sulfur protein


Rhodothermus marinus high-potential iron–sulfur protein


Swiss Light Source




Root mean square



We are grateful to Nuno A.M. Félix for excellent technical assistance, to Ana Coelho, from the Mass Spectrometry Service of Instituto de Tecnologia Química e Biológica, and to João Carita for cell growth. We thank Carlos Frazão for advice on high-resolution refinement and the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities. X-ray data collection at SLS was supported by the European Commission under the Sixth Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, contract no. RII3-CT-2004-506008. This work was supported by Fundação para a Ciência e a Tecnologia (PTDC/BIA-PRO/66833/2006 to M.A., POCTI/BIA-PRO/58608/2004 to M.T., REEQ/336/BIO/05, PTDC/BIA-PRO/67105/2006 to A.M.P.M.). M.S. received a grant from Fundação para a Ciência e a Tecnologia (BPD/24193/2005).

Supplementary material

775_2009_603_MOESM1_ESM.doc (69 kb)
Supplementary material (DOC 69 kb)


  1. 1.
    Huber C, Wachtershauser G (1998) Science 281:670–672CrossRefPubMedGoogle Scholar
  2. 2.
    Beinert H (2000) J Biol Inorg Chem 5:2–15CrossRefPubMedGoogle Scholar
  3. 3.
    Yagi T, Matsuno-Yagi A (2003) Biochemistry 42:2266–2274CrossRefPubMedGoogle Scholar
  4. 4.
    Kennel SJ, Bartsch RG, Kamen MD (1972) Biophys J 12:882–896CrossRefPubMedGoogle Scholar
  5. 5.
    Pereira MM, Antunes AM, Nunes OC, da Costa MS, Teixeira M (1994) FEBS Lett 352:327–330CrossRefPubMedGoogle Scholar
  6. 6.
    Pereira MM, Carita JN, Teixeira M (1999) Biochemistry 38:1276–1283CrossRefPubMedGoogle Scholar
  7. 7.
    Hochkoeppler A, Kofod P, Zannoni D (1995) FEBS Lett 375:197–200CrossRefPubMedGoogle Scholar
  8. 8.
    Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L (2007) Nat Struct Mol Biol 14:875–877CrossRefPubMedGoogle Scholar
  9. 9.
    Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ (2007) J Biol Chem 282:33444–33451CrossRefPubMedGoogle Scholar
  10. 10.
    Hamann N, Mander GJ, Shokes JE, Scott RA, Bennati M, Hedderich R (2007) Biochemistry 46:12875–12885CrossRefPubMedGoogle Scholar
  11. 11.
    Pereira PM, Teixeira M, Xavier AV, Louro RO, Pereira IA (2006) Biochemistry 45:10359–10367CrossRefPubMedGoogle Scholar
  12. 12.
    Lukianova OA, David SS (2005) Curr Opin Chem Biol 9:145–151. doi: 10.1016/j.cbpa.2005.02.006 Google Scholar
  13. 13.
    Meyer TE, Przysiecki CT, Watkins JA, Bhattacharyya A, Simondsen RP, Cusanovich MA, Tollin G (1983) Proc Natl Acad Sci USA 80:6740–6744CrossRefPubMedGoogle Scholar
  14. 14.
    Van Driessche G, Vandenberghe I, Devreese B, Samyn B, Meyer TE, Leigh R, Cusanovich MA, Bartsch RG, Fischer U, Van Beeumen JJ (2003) J Mol Evol 57:181–199CrossRefPubMedGoogle Scholar
  15. 15.
    Santana M, Pereira MM, Elias NP, Soares CM, Teixeira M (2001) J Bacteriol 183:687–699CrossRefPubMedGoogle Scholar
  16. 16.
    Ausubel FM, Brent R, Kingstone RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Current protocols in molecular biology. Greene Publishing Associates/Wiley Interscience, New YorkGoogle Scholar
  17. 17.
    da Costa PN, Teixeira M, Saraiva LM (2003) FEMS Microbiol Lett 218:385–393CrossRefPubMedGoogle Scholar
  18. 18.
    Leslie AGW (1992) Joint CCP4+ESF-EAMCB Newslett Protein Crystallogr 26Google Scholar
  19. 19.
    Collaborative Computational Project N (1994) Acta Crystallogr D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  20. 20.
    Uson I, Sheldrick GM (1999) Curr Opin Struct Biol 9:643–648CrossRefPubMedGoogle Scholar
  21. 21.
    Sheldrick GM (2003) SHELXC. University of Göttingen, GöttingenGoogle Scholar
  22. 22.
    Sheldrick GM (2002) Z Kristallogr 217:644–650CrossRefGoogle Scholar
  23. 23.
    Morris RJ, Perrakis A, Lamzin VS (2002) Acta Crystallogr D Biol Crystallogr 58:968–975CrossRefPubMedGoogle Scholar
  24. 24.
    Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132CrossRefPubMedGoogle Scholar
  25. 25.
    Lamzin VS, Wilson KS (1997) Methods Enzymol 277:269–305CrossRefPubMedGoogle Scholar
  26. 26.
    Sheldrick GM, Schneider TR (1997) Methods Enzymol 277:319–343CrossRefPubMedGoogle Scholar
  27. 27.
    McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Acta Crystallogr D Biol Crystallogr 61:458–464CrossRefPubMedGoogle Scholar
  28. 28.
    Engh RA, Huber R (1991) Acta Crystallogr A 47:392–400CrossRefGoogle Scholar
  29. 29.
    Kabsch W, Sander C (1983) Biopolymers 22:2577–2637CrossRefPubMedGoogle Scholar
  30. 30.
    Krissinel E, Henrick K (2007) J Mol Biol 372:774–797CrossRefPubMedGoogle Scholar
  31. 31.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  32. 32.
    Sali A, Blundell TL (1993) J Mol Biol 234:779–815CrossRefPubMedGoogle Scholar
  33. 33.
    DeLano WL (2002) PyMOL. DeLano Scientific, Palo AltoGoogle Scholar
  34. 34.
    Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) J Biol Chem 282:8309–8316CrossRefPubMedGoogle Scholar
  35. 35.
    Carter CW Jr, Kraut J, Freer ST, Xuong NH, Alden RA, Bartsch RG (1974) J Biol Chem 249:4212–4225PubMedGoogle Scholar
  36. 36.
    Liu L, Nogi T, Kobayashi M, Nozawa T, Miki K (2002) Acta Crystallogr D Biol Crystallogr 58:1085–1091CrossRefPubMedGoogle Scholar
  37. 37.
    Kerfeld CA, Salmeen AE, Yeates TO (1998) Biochemistry 37:13911–13917CrossRefPubMedGoogle Scholar
  38. 38.
    Benning MM, Meyer TE, Rayment I, Holden HM (1994) Biochemistry 33:2476–2483CrossRefPubMedGoogle Scholar
  39. 39.
    Breiter DR, Meyer TE, Rayment I, Holden HM (1991) J Biol Chem 266:18660–18667PubMedGoogle Scholar
  40. 40.
    Gonzalez A, Benini S, Ciurli S (2003) Acta Crystallogr D Biol Crystallogr 59:1582–1588CrossRefPubMedGoogle Scholar
  41. 41.
    Rayment I, Wesenberg G, Meyer TE, Cusanovich MA, Holden HM (1992) J Mol Biol 228:672–686CrossRefPubMedGoogle Scholar
  42. 42.
    Nouailler M, Bruscella P, Lojou E, Lebrun R, Bonnefoy V, Guerlesquin F (2006) Extremophiles 10:191–198CrossRefPubMedGoogle Scholar
  43. 43.
    Frazao C, Aragao D, Coelho R, Leal SS, Gomes CM, Teixeira M, Carrondo MA (2008) FEBS Lett 582:763–767CrossRefPubMedGoogle Scholar
  44. 44.
    Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) PLoS Biol 3:e309CrossRefPubMedGoogle Scholar
  45. 45.
    Backes G, Mino Y, Loehr TM, Meyer TE, Cusanovich MA, Sweeney WV, Adman ET, Sanders-Loehr J (1991) J Am Chem Soc 113:2055–2064CrossRefGoogle Scholar
  46. 46.
    Adman E, Watenpaugh KD, Jensen LH (1975) Proc Natl Acad Sci USA 72:4854–4858CrossRefPubMedGoogle Scholar
  47. 47.
    Jensen GM, Warshel A, Stephens PJ (1994) Biochemistry 33:10911–10924CrossRefPubMedGoogle Scholar
  48. 48.
    Babini E, Borsari M, Capozzi F, Eltis LD, Luchinat C (1999) J Biol Inorg Chem 4:692–700CrossRefPubMedGoogle Scholar
  49. 49.
    Soriano A, Li D, Bian S, Agarwal A, Cowan JA (1996) Biochemistry 35:12479–12486CrossRefPubMedGoogle Scholar
  50. 50.
    Agarwal A, Li D, Cowan JA (1995) Proc Natl Acad Sci USA 92:9440–9444CrossRefPubMedGoogle Scholar
  51. 51.
    Stelter M, Melo AM, Pereira MM, Gomes CM, Hreggvidsson GO, Hjorleifsdottir S, Saraiva LM, Teixeira M, Archer M (2008) Biochemistry 47:11953–11963CrossRefPubMedGoogle Scholar
  52. 52.
    Srinivasan V, Rajendran C, Sousa FL, Melo AM, Saraiva LM, Pereira MM, Santana M, Teixeira M, Michel H (2005) J Mol Biol 345:1047–1057CrossRefPubMedGoogle Scholar
  53. 53.
    Hochkoeppler A, Kofod P, Ferro G, Ciurli S (1995) Arch Biochem Biophys 322:313–318CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  • Meike Stelter
    • 1
    • 2
  • Ana M. P. Melo
    • 3
    • 4
  • Gudmundur O. Hreggvidsson
    • 5
    • 6
  • Sigridur Hjorleifsdottir
    • 5
    • 6
  • Lígia M. Saraiva
    • 1
  • Miguel Teixeira
    • 1
  • Margarida Archer
    • 1
    Email author
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.The European Synchrotron Radiation FacilityGrenoble Cedex 9France
  3. 3.Eco-Bio, Instituto de Investigação Científica TropicalOeirasPortugal
  4. 4.Faculdade de Engenharia e Ciências NaturaisUniversidade Lusófona de Humanidades e TecnologiasLisbonPortugal
  5. 5.Matis ohfReykjavíkIceland
  6. 6.University of IcelandReykjavíkIceland

Personalised recommendations