Response of Gram-positive bacteria to copper stress

  • Marc Solioz
  • Helge K. Abicht
  • Mélanie Mermod
  • Stefano Mancini
Minireview

Abstract

The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.

Keywords

Copper homeostasis Toxicity Copper ATPases Gene regulation Copper chaperones 

References

  1. 1.
    Stiles ME (1996) Antonie Van Leeuwenhoek 70:331–345PubMedCrossRefGoogle Scholar
  2. 2.
    Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR (2002) Mol Microbiol 43:981–991PubMedCrossRefGoogle Scholar
  3. 3.
    Galvez A, Abriouel H, Lopez RL, Ben ON (2007) Int J Food Microbiol 120:51–70PubMedCrossRefGoogle Scholar
  4. 4.
    Barré O, Mourlane F, Solioz M (2007) J Bacteriol 189:5947–5954PubMedCrossRefGoogle Scholar
  5. 5.
    Fraústo da Silva JJR, Williams RJP (1993) The biological chemistry of the elements. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Karlin KD (1993) Science 261:701–708PubMedCrossRefGoogle Scholar
  7. 7.
    Cavet JS, Borrelly GP, Robinson NJ (2003) FEMS Microbiol Rev 27:165–181PubMedCrossRefGoogle Scholar
  8. 8.
    Rapisarda VA, Chehin RN, De Las RJ, Rodriguez-Montelongo L, Farias RN, Massa EM (2002) Arch Biochem Biophys 405:87–94PubMedCrossRefGoogle Scholar
  9. 9.
    Rodriguez-Montelongo L, Volentini SI, Farias RN, Massa EM, Rapisarda VA (2006) Arch Biochem Biophys 451:1–7PubMedCrossRefGoogle Scholar
  10. 10.
    Arciero DM, Pierce BS, Hendrich MP, Hooper AB (2002) Biochemistry 41:1703–1709PubMedCrossRefGoogle Scholar
  11. 11.
    Ellis MJ, Grossmann JG, Eady RR, Hasnain SS (2007) J Biol Inorg Chem 12:1119–1127PubMedCrossRefGoogle Scholar
  12. 12.
    Lopez-Serrano D, Solano F, Sanchez-Amat A (2004) Gene 342:179–187PubMedCrossRefGoogle Scholar
  13. 13.
    Tsai TY, Lee YH (1998) J Biol Chem 273:19243–19250PubMedCrossRefGoogle Scholar
  14. 14.
    Brazeau BJ, Johnson BJ, Wilmot CM (2004) Arch Biochem Biophys 428:22–31PubMedCrossRefGoogle Scholar
  15. 15.
    Chan SI, Chen KH, Yu SS, Chen CL, Kuo SS (2004) Biochemistry 43:4421–4430PubMedCrossRefGoogle Scholar
  16. 16.
    Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) J Bacteriol 183:5426–5430PubMedCrossRefGoogle Scholar
  17. 17.
    Kasting JF, Siefert JL (2002) Science 296:1066–1068PubMedCrossRefGoogle Scholar
  18. 18.
    Crichton RR, Pierre J-L (2001) Biometals 14:99–112PubMedCrossRefGoogle Scholar
  19. 19.
    Kaim W, Rall J (1996) Angew Chem Int Ed Engl 35:43–60CrossRefGoogle Scholar
  20. 20.
    Ridge PG, Zhang Y, Gladyshev VN (2008) PLoS ONE 3:e1378PubMedCrossRefGoogle Scholar
  21. 21.
    Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Nature 430:803–806PubMedCrossRefGoogle Scholar
  22. 22.
    Schwarz G, Mendel RR (2006) Annu Rev Plant Biol 57:623–647PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Y, Gladyshev VN (2008) J Mol Biol 379:881–899PubMedCrossRefGoogle Scholar
  24. 24.
    Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Science 304:578–581PubMedCrossRefGoogle Scholar
  25. 25.
    Rasmussen B (2000) Nature 405:676–679PubMedCrossRefGoogle Scholar
  26. 26.
    Fouquet Y, Von Stackelberg U, Charlou JL, Donval JP, Erzinger J, Foucher JP, Herzig P, Mühe R, Soakai S, Wiedicke M, Whitechurch H (1991) Nature 349:778–781CrossRefGoogle Scholar
  27. 27.
    Turski ML, Thiele DJ (2009) J Biol Chem 284:717–721PubMedCrossRefGoogle Scholar
  28. 28.
    Tottey S, Harvie DR, Robinson NJ (2005) Acc Chem Res 38:775–783PubMedCrossRefGoogle Scholar
  29. 29.
    Kim BE, Nevitt T, Thiele DJ (2008) Nat Chem Biol 4:176–185PubMedCrossRefGoogle Scholar
  30. 30.
    Magnani D, Solioz M (2007) In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Heidelberg, pp 259–285Google Scholar
  31. 31.
    Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Science 301:1383–1387PubMedCrossRefGoogle Scholar
  32. 32.
    Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, van de Guchte M (2006) Appl Environ Microbiol 72:5143–5149PubMedCrossRefGoogle Scholar
  33. 33.
    Marty-Teysset C, de la Torre F, Garel J (2000) Appl Environ Microbiol 66:262–267PubMedCrossRefGoogle Scholar
  34. 34.
    Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) Genome Res 11:731–753PubMedCrossRefGoogle Scholar
  35. 35.
    Macomber L, Rensing C, Imlay JA (2007) J Bacteriol 189:1616–1626PubMedCrossRefGoogle Scholar
  36. 36.
    Macomber L, Imlay JA (2009) Proc Natl Acad Sci USA 106:8344–8349PubMedCrossRefGoogle Scholar
  37. 37.
    Solioz M, Stoyanov JV (2003) FEMS Microbiol Rev 27:183–195PubMedCrossRefGoogle Scholar
  38. 38.
    Odermatt A, Suter H, Krapf R, Solioz M (1992) Ann N Y Acad Sci 671:484–486PubMedCrossRefGoogle Scholar
  39. 39.
    Solioz M, Odermatt A (1995) J Biol Chem 270:9217–9221PubMedCrossRefGoogle Scholar
  40. 40.
    Odermatt A, Krapf R, Solioz M (1994) Biochem Biophys Res Commun 202:44–48PubMedCrossRefGoogle Scholar
  41. 41.
    Francis MS, Thomas CJ (1997) Mol Gen Genet 253:484–491PubMedCrossRefGoogle Scholar
  42. 42.
    Wunderli-Ye H, Solioz M (2001) Biochem Biophys Res Commun 280:713–719PubMedCrossRefGoogle Scholar
  43. 43.
    Chillappagari S, Miethke M, Trip H, Kuipers OP, Marahiel MA (2009) J Bacteriol 191:2362–2370PubMedCrossRefGoogle Scholar
  44. 44.
    Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Science 305:1612–1615PubMedCrossRefGoogle Scholar
  45. 45.
    Balasubramanian R, Rosenzweig AC (2008) Curr Opin Chem Biol 12:245–249PubMedCrossRefGoogle Scholar
  46. 46.
    Mellano MA, Cooksey DA (1988) J Bacteriol 170:2879–2883PubMedGoogle Scholar
  47. 47.
    Singleton C, Banci L, Ciofi-Baffoni S, Tenori L, Kihlken MA, Boetzel R, Le Brun NE (2008) Biochem J 411:571–579PubMedCrossRefGoogle Scholar
  48. 48.
    Singleton C, Le Brun NE (2009) Dalton Trans 28:688–696CrossRefGoogle Scholar
  49. 49.
    Odermatt A, Suter H, Krapf R, Solioz M (1993) J Biol Chem 268:12775–12779PubMedGoogle Scholar
  50. 50.
    Magnani D, Barré O, Gerber SD, Solioz M (2008) J Bacteriol 190:536–545PubMedCrossRefGoogle Scholar
  51. 51.
    Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002) Biochemistry 41:5822–5829PubMedCrossRefGoogle Scholar
  52. 52.
    Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Genome Res 12:255–271PubMedCrossRefGoogle Scholar
  53. 53.
    Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP (2007) Nat Chem Biol 3:60–68PubMedCrossRefGoogle Scholar
  54. 54.
    Strausak D, Solioz M (1997) J Biol Chem 272:8932–8936PubMedCrossRefGoogle Scholar
  55. 55.
    Hasman H, Kempf I, Chidaine B, Cariolet R, Ersboll AK, Houe H, Bruun Hansen HC, Aarestrup FM (2006) Appl Environ Microbiol 72:5784–5789PubMedCrossRefGoogle Scholar
  56. 56.
    Vats N, Lee SF (2001) Microbiology 147:653–662PubMedGoogle Scholar
  57. 57.
    Portmann R, Poulsen KR, Wimmer R, Solioz M (2006) Biometals 19:61–70PubMedCrossRefGoogle Scholar
  58. 58.
    Mitrakul K, Loo CY, Hughes CV, Ganeshkumar N (2004) Oral Microbiol Immunol 19:395–402PubMedCrossRefGoogle Scholar
  59. 59.
    Outten FW, Outten CE, Hale J, O’Halloran TV (2000) J Biol Chem 275:31024–31029PubMedCrossRefGoogle Scholar
  60. 60.
    Gaballa A, Cao M, Helmann JD (2003) Microbiology 149:3413–3421PubMedCrossRefGoogle Scholar
  61. 61.
    Smaldone GT, Helmann JD (2007) Microbiology 153:4123–4128PubMedCrossRefGoogle Scholar
  62. 62.
    Lin SJ, Culotta VC (1995) Proc Natl Acad Sci USA 92:3784–3788PubMedCrossRefGoogle Scholar
  63. 63.
    O’Halloran TV, Culotta VC (2000) J Biol Chem 275:25057–25060PubMedCrossRefGoogle Scholar
  64. 64.
    Odermatt A, Solioz M (1995) J Biol Chem 270:4349–4354PubMedCrossRefGoogle Scholar
  65. 65.
    Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (2004) Hum Mol Genet 13:1839–1848PubMedCrossRefGoogle Scholar
  66. 66.
    Schulze M, Rodel G (1988) Mol Gen Genet 211:492–498PubMedCrossRefGoogle Scholar
  67. 67.
    Hamza I, Gitlin JD (2002) J Bioenerg Biomembr 34:381–388PubMedCrossRefGoogle Scholar
  68. 68.
    Balatri E, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S (2003) Structure 11:1431–1443PubMedCrossRefGoogle Scholar
  69. 69.
    Mattatall NR, Jazairi J, Hill BC (2000) J Biol Chem 275:28802–28809PubMedCrossRefGoogle Scholar
  70. 70.
    Abriata LA, Banci L, Bertini I, Ciofi-Baffoni S, Gkazonis P, Spyroulias GA, Vila AJ, Wang S (2008) Nat Chem Biol 4:599–601PubMedCrossRefGoogle Scholar
  71. 71.
    Banci L, Bertini I, Ciofi-Baffoni S, Gerothanassis IP, Leontari I, Martinelli M, Wang S (2007) Structure 15:1132–1140PubMedCrossRefGoogle Scholar
  72. 72.
    Davis AV, O’Halloran TV (2008) Nat Chem Biol 4:148–151PubMedCrossRefGoogle Scholar
  73. 73.
    Rosenzweig AC (2001) Acc Chem Res 34:119–128PubMedCrossRefGoogle Scholar
  74. 74.
    Wimmer R, Herrmann T, Solioz M, Wüthrich K (1999) J Biol Chem 274:22597–22603PubMedCrossRefGoogle Scholar
  75. 75.
    Kihlken MA, Leech AP, Le Brun NE (2002) Biochem J 368:729–739PubMedCrossRefGoogle Scholar
  76. 76.
    Kihlken MA, Singleton C, Le Brun NE (2008) J Biol Inorg Chem 13:1011–1023PubMedCrossRefGoogle Scholar
  77. 77.
    Pufahl RA, Singer CP, Peariso KL, Lin S, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Science 278:853–856PubMedCrossRefGoogle Scholar
  78. 78.
    Lu ZH, Solioz M (2001) J Biol Chem 276:47822–47827PubMedGoogle Scholar
  79. 79.
    Van Melckebeke H, Vreuls C, Gans P, Filee P, Llabres G, Joris B, Simorre JP (2003) J Mol Biol 333:711–720PubMedCrossRefGoogle Scholar
  80. 80.
    Garcia-Castellanos R, Mallorqui-Fernandez G, Marrero A, Potempa J, Coll M, Gomis-Ruth FX (2004) J Biol Chem 279:17888–17896PubMedCrossRefGoogle Scholar
  81. 81.
    Wittman V, Wong HC (1988) J Bacteriol 170:3206–3212PubMedGoogle Scholar
  82. 82.
    Himeno T, Imanaka T, Aiba S (1986) J Bacteriol 168:1128–1132PubMedGoogle Scholar
  83. 83.
    Cantini F, Banci L, Solioz M (2009) Biochem J 417:493–499PubMedCrossRefGoogle Scholar
  84. 84.
    Lewis RA, Curnock SP, Dyke KG (1999) FEMS Microbiol Lett 178:271–275PubMedGoogle Scholar
  85. 85.
    Bird AJ (2008) Adv Microb Physiol 53:231–267PubMedCrossRefGoogle Scholar
  86. 86.
    Portmann R, Magnani D, Stoyanov JV, Schmechel A, Multhaup G, Solioz M (2004) J Biol Inorg Chem 9:396–402PubMedCrossRefGoogle Scholar
  87. 87.
    Sharma VK, Hackbarth CJ, Dickinson TM, Archer GL (1998) J Bacteriol 180:2160–2166PubMedGoogle Scholar
  88. 88.
    Cobine P, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002) In: Massaro EJ (ed) Handbook of copper pharmacology and toxicology. Humana Press, Totowa, pp 177–186Google Scholar
  89. 89.
    Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) FEBS Lett 445:27–30PubMedCrossRefGoogle Scholar
  90. 90.
    Cobine PA, Jones CE, Dameron CT (2002) J Inorg Biochem 88:192–196PubMedCrossRefGoogle Scholar
  91. 91.
    Multhaup G, Strausak D, Bissig K-D, Solioz M (2001) Biochem Biophys Res Commun 288:172–177PubMedCrossRefGoogle Scholar
  92. 92.
    Ma Z, Cowart D, Scott R, Giedroc DP (2009) Biochemistry 48:3325–3334PubMedCrossRefGoogle Scholar
  93. 93.
    Tottey S, Rich PR, Rondet SA, Robinson NJ (2001) J Biol Chem 276:19999–20004PubMedCrossRefGoogle Scholar
  94. 94.
    Pedersen PL, Carafoli E (1987) Trends Biochem Sci 12:146–150CrossRefGoogle Scholar
  95. 95.
    Toyoshima C, Mizutani T (2004) Nature 430:529–535PubMedCrossRefGoogle Scholar
  96. 96.
    Toyoshima C, Nomura H, Sugita Y (2003) Ann N Y Acad Sci 986:1–8PubMedCrossRefGoogle Scholar
  97. 97.
    Lutsenko S, Kaplan JH (1995) Biochemistry 34:15607–15613PubMedCrossRefGoogle Scholar
  98. 98.
    Solioz M, Vulpe C (1996) Trends Biochem Sci 21:237–241PubMedGoogle Scholar
  99. 99.
    Axelsen KB, Palmgren MG (1998) J Mol Evol 46:84–101PubMedCrossRefGoogle Scholar
  100. 100.
    Rensing C, Ghosh M, Rosen BP (1999) J Bacteriol 181:5891–5897PubMedGoogle Scholar
  101. 101.
    Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Nature 405:647–655PubMedCrossRefGoogle Scholar
  102. 102.
    Wu CC, Rice WJ, Stokes DL (2008) Structure 16:976–985PubMedCrossRefGoogle Scholar
  103. 103.
    Lübben M, Portmann R, Kock G, Stoll R, Young MM, Solioz M (2009) Biometals 22:363–375PubMedCrossRefGoogle Scholar
  104. 104.
    Gonzalez-Guerrero M, Eren E, Rawat S, Stemmler TL, Arguello JM (2008) J Biol Chem 283:29753–29759PubMedCrossRefGoogle Scholar
  105. 105.
    Huffman DL, O’Halloran TV (2001) Annu Rev Biochem 70:677–701PubMedCrossRefGoogle Scholar
  106. 106.
    Radford DS, Kihlken MA, Borrelly GP, Harwood CR, Le Brun NE, Cavet JS (2003) FEMS Microbiol Lett 220:105–112PubMedCrossRefGoogle Scholar
  107. 107.
    Arguello JM, Gonzalez-Guerrero M (2008) Structure 16:833–834PubMedCrossRefGoogle Scholar
  108. 108.
    Niggli V, Sigel E (2008) Trends Biochem Sci 33:156–160PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  • Marc Solioz
    • 1
  • Helge K. Abicht
    • 1
  • Mélanie Mermod
    • 1
  • Stefano Mancini
    • 1
  1. 1.Department of Clinical Pharmacology and Visceral ResearchUniversity of BerneBerneSwitzerland

Personalised recommendations