Computational modeling of the dizinc–ferroxidase complex of human H ferritin: direct comparison of the density functional theory calculated and experimental structures

  • R. C. BinningJr
  • Daniel E. BaceloEmail author
Original Paper


Density functional theory optimizations of structures of dizinc(II) complexes with a six-residue model of the ferroxidase center of human H ferritin have been performed and the results compared with the crystallographically determined structure of the complex as presented in Protein Data Bank file 2CEI. The model employs the full structures of Glu27, Glu62, His65, Glu107, Gln141, and Ala144, and the structural effect of Tyr34 is also examined. The mean absolute deviation from experiment of atomic positions in the best calculated structures is less than 0.3 Å. The experimental structure is reproduced well enough to determine the coordination environment of the metal ions. Each zinc(II) center is pentacoordinate with a single water ligand, and the two centers are bridged by a hydroxide ion. Ala144 interacts weakly and repulsively with the rest of the complex. Tyr34 displays a weak attraction through a hydrogen bond to Glu107 that affects the orientation of that group.


Ferritin Ferroxidase reaction Density functional theory Dizinc complex Dimetal center 



The authors gratefully acknowledge the support of this research by the National Science Foundation in the form of grant no. MCB-0641269. D.E.B. is grateful for support from the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.


  1. 1.
    Pau MYM, Lipscomb JD, Solomon EI (2007) Proc Natl Acad Sci USA 104:18355–18362CrossRefPubMedGoogle Scholar
  2. 2.
    Toussaint L, Bertrand L, Hue L, Crichton RR, Declercq JP (2007) J Mol Biol 365:440–452CrossRefPubMedGoogle Scholar
  3. 3.
    Liu X, Theil EC (2005) Acc Chem Res 38:167–175CrossRefPubMedGoogle Scholar
  4. 4.
    Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao G, Su M, Chasteen ND (2005) J Mol Biol 352:467–477CrossRefPubMedGoogle Scholar
  6. 6.
    Bou-Abdallah F, Arosio P, Santambrogio P, Yang X, Janus-Chandler C, Chasteen ND (2002) Biochemistry 41:11184–11191CrossRefPubMedGoogle Scholar
  7. 7.
    Treffry A, Zhao Z, Quail MA, Guest JR, Harrison PM (1997) Biochemistry 36:432–441CrossRefPubMedGoogle Scholar
  8. 8.
    Stillman TJ, Hempstead PD, Artymiuk PJ, Andrews SC, Hudson AJ, Treffry A, Guest JR, Harrison PM (2001) J Mol Biol 307:587–603CrossRefPubMedGoogle Scholar
  9. 9.
    Ha Y, Shi D, Small GW, Theil EC, Allewell NM (1999) J Biol Inorg Chem 4:243–256CrossRefPubMedGoogle Scholar
  10. 10.
    d’Estaintot BL, Santambrogio P, Granier T, Gallois B, Chevalier JM, Précigoux G, Levi S, Arosio P (2004) J Mol Biol 340:277–293CrossRefGoogle Scholar
  11. 11.
    Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JMA, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, Thomas CD, Shaw WV, Harrison PM (1991) Nature 349:541–544CrossRefPubMedGoogle Scholar
  12. 12.
    Hempstead PD, Hudson AJ, Artymiuk PJ, Andrews SC, Banfield MJ, Guest JR, Harrison PM (1994) FEBS Lett 350:258–262CrossRefPubMedGoogle Scholar
  13. 13.
    Hempstead PD, Yewdall SJ, Fernie AR, Lawson DM, Artymiuk PJ, Rice DW, Ford GC, Harrison PM (1997) J Mol Biol 268:424–448CrossRefPubMedGoogle Scholar
  14. 14.
    Pearson RG (1963) J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  15. 15.
    Liu X, Theil EC (2004) Proc Natl Acad Sci USA 101:8557–8562CrossRefPubMedGoogle Scholar
  16. 16.
    Bou-Abdallah F, Santambrogio P, Levi S, Arosio P, Chasteen ND (2005) J Mol Biol 347:543–554CrossRefPubMedGoogle Scholar
  17. 17.
    Friesner RA (2007) Proc Natl Acad Sci USA 102:6648–6653CrossRefGoogle Scholar
  18. 18.
    Siegbahn PEM, Borowski T (2006) Acc Chem Res 39:729–738CrossRefPubMedGoogle Scholar
  19. 19.
    Siegbahn PEM (1999) Inorg Chem 38:2880–2889CrossRefPubMedGoogle Scholar
  20. 20.
    Friesner RA, Guallar V (2005) Annu Rev Phys Chem 56:389–428CrossRefPubMedGoogle Scholar
  21. 21.
    Ramos MJ, Fernandes PA (2008) Acc Chem Res 41:689–698CrossRefGoogle Scholar
  22. 22.
    Guallar V, Jacobson M, McDermott A, Friesner RA (2004) J Mol Biol 337:227–239CrossRefPubMedGoogle Scholar
  23. 23.
    Mitic N, Clay MD, Saleh L, Bollinger JM, Solomon EI (2007) J Am Chem Soc 129:9049–9065CrossRefPubMedGoogle Scholar
  24. 24.
    Han WG, Liu T, Lovell T, Noodleman L (2006) Inorg Chem 45:8533–8542CrossRefPubMedGoogle Scholar
  25. 25.
    Schwartz JK, Wei P, Mitchell KH, Fox BG, Solomon EI (2008) J Am Chem Soc 130:7098–7109CrossRefPubMedGoogle Scholar
  26. 26.
    Han WG, Noodleman L (2008) Inorg Chem 47:2975–2986CrossRefPubMedGoogle Scholar
  27. 27.
    Rinaldo D, Philipp DM, Lippard SJ, Friesner RA (2007) J Am Chem Soc 129:3135–3147CrossRefPubMedGoogle Scholar
  28. 28.
    Bacelo DE, Binning RC (2006) Inorg Chem 45:10263–10269CrossRefPubMedGoogle Scholar
  29. 29.
    Hwang J, Krebs C, Huynh BH, Edmondson DE, Theil EC, Penner-Hahn JE (2000) Science 287:122–125CrossRefPubMedGoogle Scholar
  30. 30.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefPubMedGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  32. 32.
    Delley BJ (1990) Chem Phys 92:508–517Google Scholar
  33. 33.
    Delley BJ (2000) Chem Phys 113:7756–7764Google Scholar
  34. 34.
    Schwartz JK, Liu XS, Tosha T, Theil EC, Solomon EI (2008) J Am Chem Soc 130:9441–9450CrossRefPubMedGoogle Scholar
  35. 35.
    Fetter J, Cohen J, Danger D, Sanders-Loehr J, Ha Y, Theil EC (1997) J Biol Inorg Chem 2:652–661CrossRefGoogle Scholar
  36. 36.
    Bauminger ER, Harrison PM, Hechel D, Hodson NW, Nowik I, Treffry A, Yewdall SJ (1993) Biochem J 296:709–719PubMedGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  1. 1.Department of Sciences and TechnologyUniversidad MetropolitanaSan JuanUSA
  2. 2.Departamento de Química, FCNUniversidad Nacional de la Patagonia San Juan BoscoComodoro RivadaviaArgentina

Personalised recommendations