JBIC Journal of Biological Inorganic Chemistry

, Volume 14, Issue 5, pp 643–651

Recent developments of the quantum chemical cluster approach for modeling enzyme reactions



The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.


Computational chemistry Density functional theory Molecular modeling Photosynthesis 


  1. 1.
    Siegbahn PEM, Crabtree RH (1997) J Am Chem Soc 119:3103–3113CrossRefGoogle Scholar
  2. 2.
    Senn HM, Thiel W (2007) Top Curr Chem 268:173Google Scholar
  3. 3.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  4. 4.
    Siegbahn PEM (2006) J Biol Inorg Chem 11:695–701PubMedCrossRefGoogle Scholar
  5. 5.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55Google Scholar
  6. 6.
    Siegbahn PEM (2007) C R Chim 10:766–774Google Scholar
  7. 7.
    Nilsson Lill SO, Siegbahn PEM (2009) Biochemistry 48:1056–1066Google Scholar
  8. 8.
    Grimme S (2006) J Chem Phys 124:034108PubMedCrossRefGoogle Scholar
  9. 9.
    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406PubMedCrossRefGoogle Scholar
  10. 10.
    Piacenza M, Hyla-Krypsin I, Grimme S (2007) J Comput Chem 28:2275–2285PubMedCrossRefGoogle Scholar
  11. 11.
    Radon M, Pierloot K (2008) J Phys Chem 112:11824–11832PubMedCrossRefGoogle Scholar
  12. 12.
    Harayama S, Rekik M, Ngai K-L, Ornston NJ (1989) Bacteriology 171:6251Google Scholar
  13. 13.
    Harayama S, Rekik M (1989) J Biol Chem 264:15328PubMedGoogle Scholar
  14. 14.
    Subramanya HS, Roper DI, Dauter Z, Dodson EJ, Davies GJ, Wilson KS, Wigley DB (1996) Biochemistry 35:792PubMedCrossRefGoogle Scholar
  15. 15.
    Taylor AB, Czerwinski RM, Johnson WH Jr, Whitman CP, Hackert ML (1998) Biochemistry 37:14692PubMedCrossRefGoogle Scholar
  16. 16.
    Harris TK, Czerwinski RM, Johnson WH Jr, Legler PM, Abeygunawardana C, Massiah MA, Stivers JT, Whitman CP, Mildvan AS (1999) Biochemistry 38:12343PubMedCrossRefGoogle Scholar
  17. 17.
    Czerwinski RM, Harris TK, Johnson WH Jr, Legler PM, Stivers JT, Mildvan AS, Whitman CP (1999) Biochemistry 38:12358PubMedCrossRefGoogle Scholar
  18. 18.
    Metanis N, Brik A, Dawson PE, Keinan E (2004) J Am Chem Soc 126:12726PubMedCrossRefGoogle Scholar
  19. 19.
    Metanis N, Keinan E, Dawson PE (2005) J Am Chem Soc 127:5862PubMedCrossRefGoogle Scholar
  20. 20.
    Sevastik R, Himo F (2007) Bioorg Chem 35:444PubMedCrossRefGoogle Scholar
  21. 21.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  22. 22.
    Cisneros GA, Liu H, Zhang Y, Yang W (2003) J Am Chem Soc 125:10384PubMedCrossRefGoogle Scholar
  23. 23.
    Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang W (2004) Biochemistry 43:6885PubMedCrossRefGoogle Scholar
  24. 24.
    Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang WJ (2006) Phys Chem A 110:700CrossRefGoogle Scholar
  25. 25.
    Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H (1994) Appl Environ Microbiol 60:1297PubMedGoogle Scholar
  26. 26.
    van den Wijngaard AJ, Reuvekamp PTW, Janssen DB (1991) J Bacteriol 173:124PubMedGoogle Scholar
  27. 27.
    van Hylckama Vlieg JET, Tang L, Lutje Spelberg JH, Smilda T, Poelarends GJ, Bosma T, van Merode AE, Fraaije MW, Janssen DB (2001) J Bacteriol 183:5058PubMedCrossRefGoogle Scholar
  28. 28.
    Janssen DB, Majeric-Elenkov M, Hasnoui G, Hauer B, Lutje Spelberg JH (2006) Biochem Soc Trans 34:291PubMedCrossRefGoogle Scholar
  29. 29.
    Majeric-Elenkov M, Hauer B, Janssen DB (2006) Adv Synth Catal 348:579CrossRefGoogle Scholar
  30. 30.
    Lutje Spelberg JH, van Hylckama Vlieg JET, Tang L, Janssen DB, Kellogg RM (2001) Org Lett 3:41CrossRefGoogle Scholar
  31. 31.
    Lutje Spelberg JH, Tang L, van Gelder M, Kellogg RM, Janssen DB (2002) Tetrahedron Asym 13:1083CrossRefGoogle Scholar
  32. 32.
    Majeric-Elenkov M, Tang L, Hauer B, Janssen DB (2006) Org Lett 8:4227PubMedCrossRefGoogle Scholar
  33. 33.
    Hasnaoui G, Lutje Spelberg JH, de Vries E, Tang L, Hauer B, Janssen DB (2005) Tetrahedron Asym 16:1685CrossRefGoogle Scholar
  34. 34.
    Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H (1991) Biochem Biophys Res Commun 180:124PubMedCrossRefGoogle Scholar
  35. 35.
    Hopmann KH, Himo FJ (2008) Chem Theor Comput 4:1129CrossRefGoogle Scholar
  36. 36.
    Inoue T, Shiota Y, Yoshizawa K (2008) J Am Chem Soc 130:16890–16897PubMedCrossRefGoogle Scholar
  37. 37.
    Siegbahn PEM (2003) J Biol Inorg Chem 8:567–576PubMedGoogle Scholar
  38. 38.
    Schneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S (2002) J Am Chem Soc 124:8142–8151CrossRefGoogle Scholar
  39. 39.
    Altun A, Shaik S, Thiel W (2006) J Comp Chem 27:1324–1337CrossRefGoogle Scholar
  40. 40.
    Schrödinger (1991–2003) Jaguar 5.5. Schrödinger, PortlandGoogle Scholar
  41. 41.
    Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826CrossRefGoogle Scholar
  42. 42.
    Frisch MJ et al (2003) Gaussian 03, revision B.03. Gaussian, PittsburghGoogle Scholar
  43. 43.
    Friesner RA (2005) Adv Protein Chem 72:79–104PubMedCrossRefGoogle Scholar
  44. 44.
    Riccardi D, Schaefer P, Yang Y, Yu H, Ghosh N, Prat-Resina X, König P, Li G, Xu D, Guo H, Elstner M, Cui Q (2006) J Phys Chem B 110:6458–6469PubMedCrossRefGoogle Scholar
  45. 45.
    Senthilkumar K, Mujika JI, Ranaghan KE, Manby FR, Mulholland AJ, Harvey JN (2008) J R Soc Interface 5:S207–S216PubMedCrossRefGoogle Scholar
  46. 46.
    Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831–1838PubMedCrossRefGoogle Scholar
  47. 47.
    Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040–1044PubMedCrossRefGoogle Scholar
  48. 48.
    Yano J, Kern J, Irrgang K-D, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) Proc Natl Acad Sci USA 102:12047–12052PubMedCrossRefGoogle Scholar
  49. 49.
    Dau H, Grundmeier A, Loja P, Haumann M (2008) Philos Trans R Soc Lond B 363:1237–1244CrossRefGoogle Scholar
  50. 50.
    Siegbahn PEM (2006) Chem Eur J 12:9217–9227CrossRefGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  1. 1.Department of Physics, ALBA NOVAArrhenius Laboratory, Stockholm UniversityStockholmSweden
  2. 2.Department of Biochemistry and BiophysicsArrhenius Laboratory, Stockholm UniversityStockholmSweden
  3. 3.Department of Theoretical Chemistry, School of BiotechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations