Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au–Se adduct

  • Sarah Jackson-Rosario
  • Darin Cowart
  • Andrew Myers
  • Rebecca Tarrien
  • Rodney L. Levine
  • Robert A. Scott
  • William Thomas Self
Original Paper


Clostridium difficile is a nosocomial pathogen whose incidence and importance are on the rise. Previous work in our laboratory characterized the central role of selenoenzyme-dependent Stickland reactions in C. difficile metabolism. In this work we have identified, using mass spectrometry, a stable complex formed upon reaction of auranofin (a gold-containing drug) with selenide in vitro. X-ray absorption spectroscopy supports the structure that we proposed on the basis of mass-spectrometric data. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium (75Se) in selenoproteins in both Escherichia coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin–selenide adduct in the culture medium. Addition of selenium in the form of selenite or l-selenocysteine to the growth medium significantly reduces the inhibitory action of auranofin on the growth of C. difficile. On the basis of these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. This study demonstrates that targeting selenium metabolism provides a new avenue for antimicrobial development against C. difficile and other selenium-dependent pathogens.


Auranofin Selenium Extended X-ray absorption fine structure Clostridium difficile Antimicrobial 

Supplementary material

775_2009_466_MOESM1_ESM.pdf (195 kb)
Supplementary figures S1–S5 (PDF 195 kb)


  1. 1.
    Kean WF, Hart L, Buchanan WW (1997) Br J Rheumatol 36:560–572PubMedCrossRefGoogle Scholar
  2. 2.
    Messori L, Marcon G (2004) Met Ions Biol Syst 41:279–304PubMedGoogle Scholar
  3. 3.
    Becker K, Gromer S, Schirmer RH, Muller S (2000) Eur J Biochem 267:6118–6125PubMedCrossRefGoogle Scholar
  4. 4.
    Gromer S, Arscott LD, Williams CH Jr, Schirmer RH, Becker K (1998) J Biol Chem 273:20096–20101PubMedCrossRefGoogle Scholar
  5. 5.
    Lobanov AV, Gromer S, Salinas G, Gladyshev VN (2006) Nucleic Acids Res 34:4012–4024PubMedCrossRefGoogle Scholar
  6. 6.
    Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arner ES, Williams DL (2007) PLoS Med 4:e206PubMedCrossRefGoogle Scholar
  7. 7.
    Talbot S, Self WT (2008) Br J Pharmacol (in press)Google Scholar
  8. 8.
    Leinfelder W, Forchhammer K, Veprek B, Zehelein E, Bock A (1990) Proc Natl Acad Sci USA 87:543–547PubMedCrossRefGoogle Scholar
  9. 9.
    Veres Z, Tsai L, Scholz TD, Politino M, Balaban RS, Stadtman TC (1992) Proc Natl Acad Sci USA 89:2975–2979PubMedCrossRefGoogle Scholar
  10. 10.
    Veres Z, Kim IY, Scholz TD, Stadtman TC (1994) J Biol Chem 269:10597–10603PubMedGoogle Scholar
  11. 11.
    Ehrenreich A, Forchhammer K, Tormay P, Veprek B, Bock A (1992) Eur J Biochem 206:767–773PubMedCrossRefGoogle Scholar
  12. 12.
    Glass RS, Singh WP, Jung W, Veres Z, Scholz TD, Stadtman TC (1993) Biochemistry 32:12555–12559PubMedCrossRefGoogle Scholar
  13. 13.
    Forchhammer K, Leinfelder W, Boesmiller K, Veprek B, Bock A (1991) J Biol Chem 266:6318–6323PubMedGoogle Scholar
  14. 14.
    Forchhammer K, Bock A (1991) J Biol Chem 266:6324–6328PubMedGoogle Scholar
  15. 15.
    Forchhammer K, Leinfelder W, Bock A (1989) Nature 342:453–456PubMedCrossRefGoogle Scholar
  16. 16.
    Papp LV, Lu J, Holmgren A, Khanna KK (2007) Antioxid Redox Signal 9:775–806PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson S, Calos M, Myers A, Self WT (2006) J Bacteriol 188:8487–8495PubMedCrossRefGoogle Scholar
  18. 18.
    Rother M, Bock A, Wyss C (2001) Arch Microbiol 177:113–116PubMedCrossRefGoogle Scholar
  19. 19.
    Lobanov AV, Delgado C, Rahlfs S, Novoselov SV, Kryukov GV, Gromer S, Hatfield DL, Becker K, Gladyshev VN (2006) Nucleic Acids Res 34:496–505PubMedCrossRefGoogle Scholar
  20. 20.
    Kelly CP, LaMont JT (1998) Annu Rev Med 49:375–390PubMedCrossRefGoogle Scholar
  21. 21.
    Kyne L, Hamel MB, Polavaram R, Kelly CP (2002) Clin Infect Dis 34:346–353PubMedCrossRefGoogle Scholar
  22. 22.
    McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN (2005) N Engl J Med 353:2433–2441PubMedCrossRefGoogle Scholar
  23. 23.
    Redelings MD, Sorvillo F, Mascola L (2007) Emerg Infect Dis 13:1417–1419PubMedGoogle Scholar
  24. 24.
    Bourgault AM, Lamothe F, Loo VG, Poirier L (2006) Antimicrob Agents Chemother 50:3473–3475PubMedCrossRefGoogle Scholar
  25. 25.
    Pepin J, Valiquette L, Gagnon S, Routhier S, Brazeau I (2007) Am J Gastroenterol 102:2781–2788PubMedCrossRefGoogle Scholar
  26. 26.
    Gerding DN (2007) Infect Control Hosp Epidemiol 28:113–115PubMedCrossRefGoogle Scholar
  27. 27.
    Klayman DL, Griffin TS (1973) J Am Chem Soc 91:197–199Google Scholar
  28. 28.
    Mahoney WC, Hermodson MA (1980) J Biol Chem 255:11199–11203PubMedGoogle Scholar
  29. 29.
    Apffel A, Fischer S, Goldberg G, Goodley PC, Kuhlmann FE (1995) J Chromatogr 712:177–190CrossRefGoogle Scholar
  30. 30.
    Schneider D, Schuster O, Schmidbaur H (2005) Dalton Trans 1940–1947Google Scholar
  31. 31.
    Yang GA, Raptis RG (2003) Inorg Chim Acta 352:98–104CrossRefGoogle Scholar
  32. 32.
    Freisinger E, Schimanski A, Lippert B (2001) J Biol Inorg Chem 6:378–389PubMedCrossRefGoogle Scholar
  33. 33.
    Bryce RA, Charnock JM, Pattrick RAD, Lennie AR (2003) J Phys Chem A 107:2516–2523CrossRefGoogle Scholar
  34. 34.
    Ruben H, Zalkin A, Faltens MO, Templeton DH (1974) Inorg Chem 13:1836CrossRefGoogle Scholar
  35. 35.
    Moreno MS, Jorissen K, Rehr JJ (2007) Micron 38:1–11PubMedCrossRefGoogle Scholar
  36. 36.
    Bradford MM (1976) Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  37. 37.
    Gladyshev VN, Khangulov SV, Axley MJ, Stadtman TC (1994) Proc Natl Acad Sci USA 91:7708–7711PubMedCrossRefGoogle Scholar
  38. 38.
    Stickland LH (1934) Biochem J 28:1746–1759PubMedGoogle Scholar
  39. 39.
    Stickland LH (1935) Biochem J 29:288–290PubMedGoogle Scholar
  40. 40.
    Stadtman TC (1978) Methods Enzymol 53:373–382PubMedCrossRefGoogle Scholar
  41. 41.
    Sliwkowski MX, Stadtman TC (1988) Proc Natl Acad Sci USA 85:368–371PubMedCrossRefGoogle Scholar
  42. 42.
    Lovitt RW, Kell DD, Morris JG (1986) FEMS Microbiol Lett 36:269–273CrossRefGoogle Scholar
  43. 43.
    Andreesen JR (2004) Curr Opin Chem Biol 8:454–461PubMedCrossRefGoogle Scholar
  44. 44.
    Stadtman TC (1996) Annu Rev Biochem 65:83–100PubMedCrossRefGoogle Scholar
  45. 45.
    Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL (2006) J Biol Chem 281:13005–13008PubMedCrossRefGoogle Scholar
  46. 46.
    Yoo MH, Xu XM, Carlson BA, Patterson AD, Gladyshev VN, Hatfield DL (2007) PLoS ONE 2:e1112PubMedCrossRefGoogle Scholar
  47. 47.
    Redelings MD, Sorvillo F, Mascola L (2007) Emerg Infect Dis 13:1417–1419Google Scholar
  48. 48.
    Musher DM, Aslam S, Logan N, Nallacheru S, Bhaila I, Borchert F, Hamill RJ (2005) Clin Infect Dis 40:1586–1590PubMedCrossRefGoogle Scholar
  49. 49.
    Gregus Z, Gyurasics A, Csanaky I (2000) Toxicol Sci 57:22–31PubMedCrossRefGoogle Scholar
  50. 50.
    Eikens W, Kienitz C, Jones PG, Thone C (1994) J Chem Soc Dalton Trans 83–90Google Scholar
  51. 51.
    Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Pure Appl Chem 74:1987–2017CrossRefGoogle Scholar

Copyright information

© SBIC 2009

Authors and Affiliations

  • Sarah Jackson-Rosario
    • 1
  • Darin Cowart
    • 2
  • Andrew Myers
    • 1
  • Rebecca Tarrien
    • 1
  • Rodney L. Levine
    • 3
  • Robert A. Scott
    • 2
  • William Thomas Self
    • 1
  1. 1.Burnett School of Biomedical Science, College of MedicineUniversity of Central FloridaOrlandoUSA
  2. 2.Departments of Chemistry and Biochemistry and Molecular Biology, Fred C. Davison Life Sciences ComplexUniversity of GeorgiaAthensUSA
  3. 3.Laboratory of Biochemistry, National Heart, Lung, and Blood InstituteBethesdaUSA

Personalised recommendations