Advertisement

Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially α-helical conformer to aggregates of amyloid β protein(1–28)

  • Christine Talmard
  • Rodrigue Leuma Yona
  • Peter FallerEmail author
Original Paper

Abstract

The amyloidoses are a group of disorders characterized by aberrant protein folding and assembly, leading to the deposition of insoluble protein fibrils (amyloid), which provokes cell dysfunction and later cell death. One of the physiologically relevant environmental factors able to affect the conformation and hence the aggregation properties of amyloidogenic proteins/peptides is metal ions. Zn(II) promotes aggregation of most amyloidogenic peptides/proteins in vitro, including amyloid β protein (Aβ), but the underlying mechanism is not known. To better understand this mechanism the present study focused on the partially α-helical conformer, supposed to be an intermediate in Aβ aggregation. This partially α-helical conformer is stabilized by 10–20% 2,2,2-trifluoroethanol (TFE): therefore, the influence of Zn binding on the aggregation of the amylidogenic model peptide Aβ(1–28) (Aβ28) was investigated at different TFE concentrations. The results showed a synergistic effect of Zn(II) and 10% TFE, i.e., that either Zn or 10% TFE accelerated Aβ28 aggregation on its own, but with them together an at least 10 times promotion of Aβ28 aggregation was observed. Further studies by thioflavin T fluorescence spectroscopy, transmission electron microscopy, and circular dichroism (CD) spectroscopy suggested that the aggregates of Zn-Aβ28 formed in 10%TFE contain a β-sheet secondary structure and are more of the amyloid type. CD spectroscopy indicated that Zn binding disrupted partially the α-helical structure of Aβ28 in TFE. Thus, we propose that the promotion of Aβ28 aggregation by Zn is based on the transformation of the partially α-helical conformer (intermediate) towards the β-sheet amyloid structure by a destabilization of the α-helix in the intermediate.

Keywords

Amyloid β protein Zinc Peptide structure Aggregation 

Abbreviations

Amyloid β protein

Aβ16

Amyloid β protein(1–16)

Aβ28

Amyloid β protein(1–28)

Aβ40

Amyloid β protein(1–40)

CD

Circular dichroism

HEPES

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

SDS

Sodium dodecyl sulfate

TEM

Transmission electron microscopy

TFE

2,2,2-Trifluoroethanol

ThT

Thioflavin T

Notes

Acknowledgments

We would like to thank Jade Durand and Vincent Colliere for sample preparation for TEM and the TEM measurements, respectively. This work was supported by a grant from the French ministry, ACI-INTERFACE PCB (DRAB), and the University Paul Sabatier (BQR ASUPS AO3). C.T. was supported by a grant from ESF and R.L.Y. by a grant from the Association France Alzheimer.

Supplementary material

775_2008_461_MOESM1_ESM.doc (128 kb)
Supplementary figures (DOC 129 kb)

References

  1. 1.
    Sacchettini JC, Kelly JW (2002) Nat Rev Drug Discov 1:267–275CrossRefPubMedGoogle Scholar
  2. 2.
    Chiti F, Dobson CM (2006) Annu Rev Biochem 75:333–366CrossRefPubMedGoogle Scholar
  3. 3.
    Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Trends Biochem Sci 32:217–224CrossRefPubMedGoogle Scholar
  4. 4.
    Pepys MB (2006) Annu Rev Med 57:223–241CrossRefPubMedGoogle Scholar
  5. 5.
    Jahn TR, Radford SE (2005) FEBS J 272:5962–5970CrossRefPubMedGoogle Scholar
  6. 6.
    Ohnishi S, Takano K (2004) Cell Mol Life Sci 61:511–524CrossRefPubMedGoogle Scholar
  7. 7.
    Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) J Biol Chem 272:22364–22372CrossRefPubMedGoogle Scholar
  8. 8.
    Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) J Biol Chem 274:25945–25952CrossRefPubMedGoogle Scholar
  9. 9.
    Kirkitadze MD, Condron MM, Teplow DB (2001) J Mol Biol 312:1103–1119CrossRefPubMedGoogle Scholar
  10. 10.
    Fezoui Y, Teplow DB (2002) J Biol Chem 277:36948–36954CrossRefPubMedGoogle Scholar
  11. 11.
    Klein WL, Stine WB Jr, Teplow DB (2004) Neurobiol Aging 25:569–580CrossRefPubMedGoogle Scholar
  12. 12.
    Glabe CG (2006) Neurobiol Aging 27:570–575CrossRefPubMedGoogle Scholar
  13. 13.
    Bush AI, Pettingell WH, Multhaup G, Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Science 265:1464–1467CrossRefPubMedGoogle Scholar
  14. 14.
    Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) J Biol Chem 273:12817–12826CrossRefPubMedGoogle Scholar
  15. 15.
    Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G, Remelli M, Luczkowski M, Kozlowski H (2005) J Am Chem Soc 127:996–1006CrossRefPubMedGoogle Scholar
  16. 16.
    Bishop GM, Robinson SR (2003) J Neurosci Res 73:316–323CrossRefPubMedGoogle Scholar
  17. 17.
    Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) J Am Chem Soc 128:9893–9901CrossRefPubMedGoogle Scholar
  18. 18.
    Wilkinson-White LE, Easterbrook-Smith SB (2007) Biochemistry 46:9123–9132CrossRefPubMedGoogle Scholar
  19. 19.
    Khan A, Ashcroft AE, Korchazhkina OV, Exley C (2004) J Inorg Biochem 98:2006–2010CrossRefPubMedGoogle Scholar
  20. 20.
    Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Biochemistry 40:8073–8084CrossRefPubMedGoogle Scholar
  21. 21.
    Talmard C, Guilloreau L, Coppel Y, Mazarguil H, Faller P (2007) Chembiochem 8:163–165CrossRefPubMedGoogle Scholar
  22. 22.
    Yang DS, McLaurin J, Qin K, Westaway D, Fraser PE (2000) Eur J Biochem 267:6692–6698CrossRefPubMedGoogle Scholar
  23. 23.
    Yoshiike Y, Tanemura K, Murayama O, Akagi T, Murayama M, Sato S, Sun X, Tanaka N, Takashima A (2001) J Biol Chem 276:32293–32299CrossRefPubMedGoogle Scholar
  24. 24.
    House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C (2004) J Alzheimers Dis 6:291–301PubMedGoogle Scholar
  25. 25.
    Raman B, Ban T, Yamaguchi K, Sakai M, Kawai T, Naiki H, Goto Y (2005) J Biol Chem 280:16157–16162CrossRefPubMedGoogle Scholar
  26. 26.
    Klug GM, Losic D, Subasinghe SS, Aguilar MI, Martin LL, Small DH (2003) Eur J Biochem 270:4282–4293CrossRefPubMedGoogle Scholar
  27. 27.
    Noy D, Solomonov I, Sinkevich O, Arad T, Kjaer K, Sagi I (2008) J Am Chem Soc 130:1376–1383CrossRefPubMedGoogle Scholar
  28. 28.
    Talmard C, Bouzan A, Faller P (2007) Biochemistry 46:13658–13666CrossRefPubMedGoogle Scholar
  29. 29.
    Tõugu V, Karafin A, Palumaa P (2008) J Neurochem 104:1249–1259CrossRefPubMedGoogle Scholar
  30. 30.
    Liu ST, Howlett G, Barrow CJ (1999) Biochemistry 38:9373–9378CrossRefPubMedGoogle Scholar
  31. 31.
    Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Biochemistry 39:7024–7031CrossRefPubMedGoogle Scholar
  32. 32.
    Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) J Biol Chem 276:20466–20473CrossRefPubMedGoogle Scholar
  33. 33.
    Kozin SA, Zirah S, Rebuffat S, Hoa GH, Debey P (2001) Biochem Biophys Res Commun 285:959–964CrossRefPubMedGoogle Scholar
  34. 34.
    Mekmouche Y, Coppel Y, Hochgrafe K, Guilloreau L, Talmard C, Mazarguil H, Faller P (2005) Chembiochem 6:1663–1671CrossRefPubMedGoogle Scholar
  35. 35.
    Syme CD, Viles JH (2006) Biochim Biophys Acta 1764:246–256PubMedGoogle Scholar
  36. 36.
    Zirah S, Rebuffat S, Kozin A, Debey P, Fournier F, Lesage D, Tabet J-C (2003) Int J Mass Spectrom 228:999–1016CrossRefGoogle Scholar
  37. 37.
    Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Ségalas-Milazzo I, Debey P, Rebuffat S (2006) J Biol Chem 281:2151–2161CrossRefPubMedGoogle Scholar
  38. 38.
    Stellato F, Menestrina G, Serra MD, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S (2006) Eur Biophys J 35:340–351CrossRefPubMedGoogle Scholar
  39. 39.
    Hou L, Zagorski MG (2006) J Am Chem Soc 128:9260–9261CrossRefPubMedGoogle Scholar
  40. 40.
    Danielsson J, Pierattelli R, Banci L, Graslund A (2007) FEBS J 274:46–59CrossRefPubMedGoogle Scholar
  41. 41.
    Faller P, Hureau C (2009) Dalton Trans. doi: 10.1039/b813398k
  42. 42.
    Gaggelli E, Janicka-Klos A, Jankowska E, Kozlowski H, Migliorini C, Molteni E, Valensin D, Valensin G, Wieczerzak E (2008) J Phys Chem B 112:100–109CrossRefPubMedGoogle Scholar
  43. 43.
    Chen YR, Huang HB, Chyan CL, Shiao MS, Lin TH, Chen YC (2006) J Biochem 139:733–740CrossRefPubMedGoogle Scholar
  44. 44.
    Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) J Struct Biol 155:30–37CrossRefPubMedGoogle Scholar
  45. 45.
    Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ (1987) Proc Natl Acad Sci USA 84:6953–6957CrossRefPubMedGoogle Scholar
  46. 46.
    Guilloreau L, Damian L, Coppel Y, Mazarguil H, Winterhalter M, Faller P (2006) J Biol Inorg Chem 11:1024–1038CrossRefPubMedGoogle Scholar
  47. 47.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85CrossRefPubMedGoogle Scholar
  48. 48.
    LeVine H 3rd (1999) Methods Enzymol 309:274–284CrossRefPubMedGoogle Scholar
  49. 49.
    Marcinowski KJ, Shao H, Clancy EL, Zagorski MG (1998) J Am Chem Soc 120:11082–11091CrossRefGoogle Scholar
  50. 50.
    Garai K, Sahoo B, Kaushalya SK, Desai R, Maiti S (2007) Biochemistry 46:10655–10663CrossRefPubMedGoogle Scholar
  51. 51.
    Tew DJ, Bottomley SP, Smith DP, Ciccotosto GD, Babon J, Hinds MG, Masters CL, Cappai R, Barnham KJ (2008) Biophys J 94:2752–2766CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • Christine Talmard
    • 1
    • 2
  • Rodrigue Leuma Yona
    • 1
    • 2
  • Peter Faller
    • 1
    • 2
    Email author
  1. 1.LCC (Laboratoire de Chimie de Coordination)CNRSToulouseFrance
  2. 2.UPS, INPT, LCCUniversité de ToulouseToulouseFrance

Personalised recommendations