Advertisement

Binding of HIV-1 TAR mRNA to a peptide nucleic acid oligomer and its conjugates with metal-ion-binding multidentate ligands

  • Matthew J. Belousoff
  • Gilles Gasser
  • Bim Graham
  • Yitzhak Tor
  • Leone Spiccia
Original Paper

Abstract

A peptide nucleic acid (PNA) oligomer and a series of PNA conjugates featuring covalently attached pendant 1,4,7,10-tetraazacyclododecane (cyclen) or bis((pyridin-2-yl)methyl)amine (DPA) moieties have been synthesized that are complementary to regions of the HIV-1 TAR messenger RNA stem-loop. Thermal denaturation studies, in conjunction win with native gel shift assays, suggest that the PNAs “invade” TAR to produce a mixture of two 1:1 PNA–TAR adducts, tentatively assigned as an “open-duplex” structure, in which the TAR stem-loop dissociates and the PNA hybridizes with its RNA complement via Watson–Crick base-pairing, and a triplex-type structure, in which the initially displaced RNA segment is bound to the PNA:RNA duplex through Hoogsteen base-pairing. Thermal denaturation experiments with the TAR sequence and single-stranded RNA and DNA oligonucleotides, both in the presence and in the absence of Zn2+ ions, show that the introduction of cyclen or DPA ligand arms into the PNA oligomer leads to a small but reproducible increase in the T m values. This is attributed to hydrogen-bonding and/or electrostatic interactions between protonated forms of cyclen/DPA and the cognate RNA or DNA oligonucleotide targets. Contrary to expectations, the addition of Zn2+ ions did not further enhance duplex formation through binding of Zn(II)–cyclen or Zn(II)–DPA moieties to the complementary RNA or DNA. Native gel shift assays further confirmed the stability increase of the metal-free cyclen- and DPA-modified PNA hybrids as compared with a control PNA sequence.

Keywords

Peptide nucleic acids Macrocycle peptide nucleic acid hybrids Bis((pyridin-2-yl)methyl)amine–peptide nucleic acid hybrids Zinc(II) complexes Targeting HIV-1 TAR stem-loop 

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation and the Australian Research Council (ARC) through the Australian Centre for Electromaterials Science (for L.S.) and (for Y.T.) the National Institutes of Health (grants number AI 47673 and GM 069773). G.G. was the recipient of a Swiss Fellowship for Prospective Researchers Grant (PBNE2-106771). M.J.B. was the recipient of an Australian Postgraduate Award and was supported by a Fulbright Fellowship. We are grateful to S.J. Langford for access to the PNA synthesizer.

Supplementary material

775_2008_448_MOESM1_ESM.pdf (2.3 mb)
Supplementary material (PDF 2.26 MB)

References

  1. 1.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Science 254:1497–1500PubMedCrossRefGoogle Scholar
  2. 2.
    Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PAM (1996) J Am Chem Soc 118:7667–7670CrossRefGoogle Scholar
  3. 3.
    Nielsen PE (1999) Curr Opin Struct Biol 9:353–357PubMedCrossRefGoogle Scholar
  4. 4.
    Koppelhus U, Nielsen PE (2001) Antisense drug technology, 1st Ed., Netlibrary, pp 359–374Google Scholar
  5. 5.
    Hanvey JC, Babiss LE (1995) Delivery strategies for antisense oligonucleotide therapeutics. CRC press, pp 151–60Google Scholar
  6. 6.
    Gambari R (2004) Curr Top Pharmacol 8:313–324Google Scholar
  7. 7.
    Cogoi S, Codognotto A, Rapozzi V, Xodo LE (2005) Nucleosides Nucleotides Nucleic Acids 24:971–974PubMedCrossRefGoogle Scholar
  8. 8.
    Marin VL, Roy S, Armitage BA (2004) Expert Opin Biol Ther 4:337–348PubMedCrossRefGoogle Scholar
  9. 9.
    Le Floch F, Ho H-A, Harding-Lepage P, Pedard M, Neagu-Plesu R, Leclerc M (2005) J Adv Mater 17:1251–1254CrossRefGoogle Scholar
  10. 10.
    Arlinghaus HF, Schoreoder M, Feldner JC, Brandt O, Hoheisel JD, Lipinsky D (2004) Appl Surf Sci 231–232:392–396CrossRefGoogle Scholar
  11. 11.
    Wang J (1998) Biosens Bioelectron 13:757–762PubMedCrossRefGoogle Scholar
  12. 12.
    Ratilainen T, Holmen A, Norden B (2004) Peptide nucleic acids. 2nd edn, Taylor & Francis, pp 77–105Google Scholar
  13. 13.
    Hashimoto K, Ishimori Y (2001) Lab Chip 1:61–63PubMedCrossRefGoogle Scholar
  14. 14.
    Aoki H, Buhlmann P, Umezawa Y (2000) Electroanalysis 12:1272–1276CrossRefGoogle Scholar
  15. 15.
    Wang J, Nielsen PE, Jiang M, Cai X, Fernandes JR, Grant DH, Ozsoz M, Beglieter A, Mowat M (1997) Anal Chem 69:5200–5202PubMedCrossRefGoogle Scholar
  16. 16.
    Gasser G, Belousoff MJ, Bond AM, Spiccia L (2006) J Org Chem 71:7565–7573PubMedCrossRefGoogle Scholar
  17. 17.
    Hess A, Metzler-Nolte, N (1999) Chem Commun 885–886Google Scholar
  18. 18.
    Baldoli C, Falciola L, Licandro E, Maiorana S, Mussini P, Ramani P, Rigamonti C, Zinzalla G (2004) J Organomet Chem 689:4791–4802Google Scholar
  19. 19.
    Baldoli C, Giannini C, Licandro E, Maiorana S, Zinzalla G (2004) Synlett 6:1044–1048Google Scholar
  20. 20.
    Hudson RHE, Li G, Tse J (2002) Tetrahedron Letters 43:1381–1386Google Scholar
  21. 21.
    Gasser G, Spiccia L (2008) J Organomet Chem 693:2478–2482Google Scholar
  22. 22.
    Verheijen JC, van der Marel GA, van Boom JH, Metzler-Nolte N (2000) Bioconjug Chem 11:741–743PubMedCrossRefGoogle Scholar
  23. 23.
    Baldoli C, Cerea P, Giannini C, Licandro E, Rigamonti C, Maionara S (2005) Synlett 13:1984–1994Google Scholar
  24. 24.
    Hamzavi R, Happ T, Weitershaus K, Metzler-Nolte N (2004) J Organomet Chem 689:4745–4750CrossRefGoogle Scholar
  25. 25.
    Maurer A, Kraatz H-B, Metzler-Nolte N (2005) Eur J Inorg Chem 3207–3210Google Scholar
  26. 26.
    Füssl A, Schleifenbaum A, Göritz M, Riddell A, Schultz C, Kraemer R (2006) J Am Chem Soc 128:5986–5987PubMedCrossRefGoogle Scholar
  27. 27.
    Mokhir A, Stiebing R, Kraemer R (2003) Bioorg Med Chem Lett 13:1399–1401PubMedCrossRefGoogle Scholar
  28. 28.
    Mokhir A, Kraemer R, Wolf H (2004) J Am Chem Soc 126:6208–6209PubMedCrossRefGoogle Scholar
  29. 29.
    Watson RM, Skorik YA, Patra GK, Achim C (2005) J Am Chem Soc 127:14628–14639PubMedCrossRefGoogle Scholar
  30. 30.
    Popescu D-L, Parolin TJ, Achim C (2003) J Am Chem Soc 125:6354–6355PubMedCrossRefGoogle Scholar
  31. 31.
    Küsel A, Zhang J, Gil MA, Stückl AC, Meyer-Klaucke W, Meyer F, Diederichsen U (2005) Eur J Inorg Chem 4317–4325Google Scholar
  32. 32.
    Franzini RM, Watson RM, Popescu D-L, Patra GK, Achim C (2004) Polymer Prepr 45:337–338Google Scholar
  33. 33.
    Kornyushyna O, Stemmler AJ, Graybosch DM, Bergenthal I, Burrows CJ (2005) Bioconjug Chem 16:178–183PubMedCrossRefGoogle Scholar
  34. 34.
    Zelder FH, Brunner J, Kraemer R (2003) Chem Commun 7:902–903Google Scholar
  35. 35.
    Boll I, Kraemer R, Brunner J, Mokhir A (2005) J Am Chem Soc 127:7849–7856PubMedCrossRefGoogle Scholar
  36. 36.
    Brunner J, Mokhir A, Kraemer R (2003) J Am Chem Soc 125:12410–12411PubMedCrossRefGoogle Scholar
  37. 37.
    Shionoya M, Kimura E, Shiro M (1993) J Am Chem Soc 115:6730–6737CrossRefGoogle Scholar
  38. 38.
    Aoki S, Kimura E (2004) Chem Rev 104:769–787PubMedCrossRefGoogle Scholar
  39. 39.
    Barawkar DA, Kumar RK, Ganesh KN (1992) Tetrahedron 48:8505–8514CrossRefGoogle Scholar
  40. 40.
    Gasser G, Belousoff MJ, Bond AM, Kosowski Z, Spiccia L (2007) Inorg Chem 46:1665–1674PubMedCrossRefGoogle Scholar
  41. 41.
    Kikuta E, Katsube N, Kimura E (1999) J Biol Inorg Chem 4:431–440PubMedCrossRefGoogle Scholar
  42. 42.
    Aoki S, Honda Y, Kimura E (1998) J Am Chem Soc 120:10018–10026CrossRefGoogle Scholar
  43. 43.
    Kikuta E, Aoki S, Kimura E (2001) J Am Chem Soc 123:7911–7912PubMedCrossRefGoogle Scholar
  44. 44.
    Ma L-J, Zhang G-L, Chen S-Y, Wu B, You J-S, Xia C-Q, Yu X-Q (2005) J Pept Sci 11:812–817PubMedCrossRefGoogle Scholar
  45. 45.
    Mokhir A, Zohm B, Fuessl A, Kraemer R (2003) Bioorg Med Chem Lett 13:2489–2492CrossRefGoogle Scholar
  46. 46.
    Armarego WLF, Perrin DD (1996) Purification of laboratory chemicals, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  47. 47.
    Jeon JW, Son SJ, Yoo CE, Hong IS, Song JB, Suh J (2002) Org Lett 4:4155–4158PubMedCrossRefGoogle Scholar
  48. 48.
    Brandes S, Gros C, Denat F, Pullumbi P, Guilard R (1996) Bull Soc Chim Fr 133:65–73Google Scholar
  49. 49.
    Kirin SI, Duebon P, Weyhermueller T, Bill E, Metzler-Nolte N (2005) Inorg Chem 44:5405–5415PubMedCrossRefGoogle Scholar
  50. 50.
    Hartley FR, Burgess C, Alcock RM (1980) Solution equilibria, 1st edn. Wiley, LondonGoogle Scholar
  51. 51.
    Lee R, Kaushik N, Modak MJ, Vinayak R, Pandey VN (1998) Biochemistry 37:900–910PubMedCrossRefGoogle Scholar
  52. 52.
    Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG (1992) Science 258:1481–1485PubMedCrossRefGoogle Scholar
  53. 53.
    Peffer NJ, Hanvey JC, Bisi JE, Thomson SA, Hassman CF, Noble SA, Babiss LE (1993) Proc Natl Acad Sci USA 90:10648–10652PubMedCrossRefGoogle Scholar
  54. 54.
    Kool ET (1997) New J Chem 21:33–45Google Scholar
  55. 55.
    Asensio JL, Carr R, Brown T, Lane AN (1999) J Am Chem Soc 121:11063–11070CrossRefGoogle Scholar
  56. 56.
    Tam VK, Liu Q, Tor Y (2006) Chem Commun 2684–2686Google Scholar
  57. 57.
    Avino A, Frieden M, Morales JC, De la Torre BG, Gueimil-Garcia R, Orozco M, Gonzalez C, Eritja R (2003) Nucleosides Nucleotides Nucleic Acids 22:645–648PubMedCrossRefGoogle Scholar
  58. 58.
    Duehom KL, Nielsen PE (1997) New J Chem 21:19–31Google Scholar
  59. 59.
    Jensen KK, Oerum H, Nielsen PE, Norden B (1997) Biochemistry 36:5072–5077PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SK, Nielsen PE, Egholm M, Buchardt O, Berg RH, Norden B (1993) J Am Chem Soc 115:6477–6481CrossRefGoogle Scholar
  61. 61.
    Brahms J (1967) Proc R Soc Lond Ser A 297:150–162CrossRefGoogle Scholar
  62. 62.
    Smith RM, Martell AE, Motekaitis RJ (1997) NIST standard reference data 46Google Scholar
  63. 63.
    Warden A, Warren M, Milton TW, Spiccia L (2004) New J Chem 28:1160–1167CrossRefGoogle Scholar
  64. 64.
    Warden A, Warren M, Hearn MTW, Spiccia L (2004) Inorg Chem 43:6936–6943PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.School of ChemistryMonash UniversityClaytonAustralia
  2. 2.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA
  3. 3.Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia

Personalised recommendations