Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography–inductively coupled plasma atomic emission spectroscopy

  • Shawn A. Manley
  • Simon Byrns
  • Andrew W. Lyon
  • Peter Brown
  • Jürgen Gailer
Original Paper


Analytical methods which are capable of determining the plasma or serum metalloproteome have inherent diagnostic value for human diseases associated with increased or decreased concentrations of specific plasma metalloproteins. We have therefore systematically developed a method to rapidly determine the major Cu-, Fe-, and Zn-containing metalloproteins in rabbit plasma (0.5 mL) based on size-exclusion chromatography (SEC; stationary phase Superdex 200, mobile phase phosphate-buffered saline pH 7.4) and the simultaneous online detection of Cu, Fe, and Zn in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). Whereas most previous studies reported on the analysis of serum, our investigations clearly demonstrated that the analysis of plasma within 30 min of collection results in the detection of one more Cu peak (blood coagulation factor V) than has been previously reported (transcuprein, ceruloplasmin, albumin-bound Cu, and small molecular weight Cu). The average amount of Cu associated with these five proteins corresponded to 21, 18, 21, 30 and 10% of total plasma Cu, respectively. In contrast, only two Fe metalloproteins (ferritin and transferrin, corresponding to an average of 9 and 91% of total plasma Fe) and approximately five Zn metalloproteins (α2-macroglobulin and albumin-bound Zn, which corresponded to an average of plasma Zn) were detected. Metalloproteins were assigned on the basis of the coelution of the corresponding metal and protein identified by immunoassays or activity-based enzyme assays. The SEC-ICP-AES approach developed allowed the determination of approximately 12 Cu, Fe, and Zn metalloproteins in rabbit plasma within approximately 24 min and can be applied to analyze human plasma, which is potentially useful for diagnosing Cu-, Fe-, and Zn-related diseases.


Blood plasma Size-exclusion chromatography Inductively coupled plasma atomic emission spectrometry Metalloproteins 



This research was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Teledyne Leeman Labs is gratefully acknowledged for funding the attendance of S.A.M. and J.G. at HPLC 2007 in Ghent, Belgium. Katie L. Pei is gratefully acknowledged for help regarding the collection of fractions. We would also like to extend thanks to Raymond J. Turner and especially Arvi Rauk for constructive feedback on the final draft of the manuscript. The staff of the Animal Health Unit (LESARC) at the University of Calgary is gratefully acknowledged for the maintenance of and the drawing of blood from the rabbits. We would also like to extend sincere thanks to one anonymous reviewer who provided valuable comments to significantly improve the final manuscript.

Supplementary material

775_2008_424_MOESM1_ESM.pdf (84 kb)
Results of stationary phase and mobile phase optimization (PDF 83 kb)


  1. 1.
    Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Karlin KD (1993) Science 261:701–708PubMedCrossRefGoogle Scholar
  3. 3.
    Cousins RJ, Liuzzi JP, Lichten LA (2006) J Biol Chem 281:24085–24089PubMedCrossRefGoogle Scholar
  4. 4.
    Liu N, Lo LS, Askary H, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu Y-H, Vivas E, Tsai M, Westbrook T, Linder MC (2007) J Nutr Biochem 18:597–608PubMedCrossRefGoogle Scholar
  5. 5.
    van Eijk HG, de Jong G (1992) Biol Trace Elem Res 35:13–24PubMedCrossRefGoogle Scholar
  6. 6.
    de Silva DM, Askwith CC, Kaplan J (1996) Physiol Rev 76:31–47PubMedGoogle Scholar
  7. 7.
    Prohaska C, Pomazal K, Steffan I (2000) Fresenius J Anal Chem 367:479–484PubMedCrossRefGoogle Scholar
  8. 8.
    Pomazal K, Prohaska C, Steffan I, Reich G, Huber JFK (1999) Analyst 124:657–663PubMedCrossRefGoogle Scholar
  9. 9.
    Craig WY, Ledue TB, Ritchie RF (2000) Plasma proteins, clinical utility and interpretation. Dade Behring, NewarkGoogle Scholar
  10. 10.
    Winzerling JJ, Law JH (1997) Annu Rev Nutr 17:501–526PubMedCrossRefGoogle Scholar
  11. 11.
    Szpunar J (2005) Analyst 130:442–465PubMedCrossRefGoogle Scholar
  12. 12.
    Szpunar J, Lobinski R (1999) Pure Appl Chem 71:899–918CrossRefGoogle Scholar
  13. 13.
    Garcia JS, de Magalhaes CS, Arruda MAZ (2006) Talanta 69:1–15PubMedCrossRefGoogle Scholar
  14. 14.
    Szpunar J (2000) Analyst 125:963–988PubMedCrossRefGoogle Scholar
  15. 15.
    Sanz-Medel A, Montes-Bayon M, Sanchez MLF (2003) Anal Bioanal Chem 377:236–247PubMedCrossRefGoogle Scholar
  16. 16.
    Dawson JB, Bahreynitoosi MH, Ellis DJ, Hodgkinson A (1981) Analyst 106:153–159PubMedCrossRefGoogle Scholar
  17. 17.
    Gardiner PE, Ottaway JM, Fell GS, Burns RR (1981) Anal Chim Acta 124:281–294CrossRefGoogle Scholar
  18. 18.
    Gardiner PE, Braetter P, Negretti VE, Schulze G (1983) Spectrochim Acta 38B:427–436Google Scholar
  19. 19.
    Gardiner PE, Braetter P, Gercken B, Tomiak A (1987) J Anal At Spectrom 2:375–378CrossRefGoogle Scholar
  20. 20.
    Gercken B, Barnes RM (1991) Anal Chem 63:283–287PubMedCrossRefGoogle Scholar
  21. 21.
    Inagaki K, Umemura T, Matsuura H, Haraguchi H (2000) Anal Sci 16:787–788CrossRefGoogle Scholar
  22. 22.
    Shum SCK, Houk RS (1993) Anal Chem 65:2972–2976CrossRefGoogle Scholar
  23. 23.
    Muniz CS, Gayon JMM, Alonso JIG, Sanz-Medel A (2001) J Anal At Spectrom 16:587–592CrossRefGoogle Scholar
  24. 24.
    Bayon MM, Cabezuelo ABS, Gonzalez EB, Alonso JIG, Sanz-Medel A (1999) J Anal At Spectrom 14:947–951CrossRefGoogle Scholar
  25. 25.
    Inagaki K, Mikuriya N, Morita S, Haraguchi H, Nakahara Y, Hattori M, Kinosita T, Saito H (2000) Analyst 125:197–203PubMedCrossRefGoogle Scholar
  26. 26.
    Zalewski P, Truong-Tran A, Lincoln S, Ward D, Shankar A, Coyle P, Jayaram L, Copley A, Grosser D, Muriga C, Lang C, Ruffin R (2006) Biotechniques 40:509–520PubMedCrossRefGoogle Scholar
  27. 27.
    Pomazal K, Prohaska C, Steffan I (2002) J Chromatogr A 960:143–150PubMedCrossRefGoogle Scholar
  28. 28.
    Curzon G, Vallet L (1960) Biochem J 74:279–287PubMedGoogle Scholar
  29. 29.
    Kalafatis M, Krishnaswamy S, Rand MD, Mann KG (1993) Methods Enzymol 222:224–236PubMedCrossRefGoogle Scholar
  30. 30.
    Pieper R, Gatlin CL, Makusky AJ, Russo PS, Schatz CR, Miller SS, Su Q, McGrath AM, Estock MA, Parmar PP, Zhao M, Huang ST, Zhou J, Wang F, Esquer-Blasco R, Anderson NL, Taylor J, Steiner S (2003) Proteomics 3:1345–1364PubMedCrossRefGoogle Scholar
  31. 31.
    Falchuk KH (1977) N Engl J Med 296:1129–1134PubMedGoogle Scholar
  32. 32.
    Weiss KC, Linder MC (1985) Am J Physiol 249:E77–E88PubMedGoogle Scholar
  33. 33.
    Harris WR, Wang Z, Brook C, Yang B, Islam A (2003) Inorg Chem 42:5880–5889PubMedCrossRefGoogle Scholar
  34. 34.
    Mann KG, Lawler CM, Vehar GA, Church WR (1984) J Biol Chem 259:12949–12951PubMedGoogle Scholar
  35. 35.
    Church WR, Jernigan RL, Toole J, Hewick RM, Knopf J, Knutson GJ, Nesheim ME, Mann KG, Fass DN (1984) Proc Natl Acad Sci USA 81:6934–6937PubMedCrossRefGoogle Scholar
  36. 36.
    Laue TM, Johnson AE, Esmon CT, Yphantis DA (1984) Biochemistry 23:1339–1348PubMedCrossRefGoogle Scholar
  37. 37.
    Saenko EL, Yaropolov AI, Harris ED (1994) J Trace Elem Exp Med 7:69–88Google Scholar
  38. 38.
    Gailer J, Madden S, Burke MF, Denton MB, Aposhian HV (2000) Appl Organomet Chem 14:355–363CrossRefGoogle Scholar
  39. 39.
    Mann KG, Kalafatis M (2003) Blood 101:20–30PubMedCrossRefGoogle Scholar
  40. 40.
    Karlsson K, Marklund SL (1988) Biochem J 255:223–228PubMedGoogle Scholar
  41. 41.
    Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) J Inorg Biochem 70:33–39PubMedCrossRefGoogle Scholar
  42. 42.
    May PM, Linder PW, Williams DR (1976) Experientia 32:1492–1494PubMedCrossRefGoogle Scholar
  43. 43.
    Wang J, Houk RS, Dreessen D, Wiederin DR (1999) JBIC 4:546–553PubMedCrossRefGoogle Scholar
  44. 44.
    Chesters JK, Will M (1981) Br J Nutr 46:111–118PubMedCrossRefGoogle Scholar
  45. 45.
    Raab A, Braetter P (1998) J Chromatogr B 707:17–24CrossRefGoogle Scholar
  46. 46.
    Adham NF, Song MK, Rinderknecht H (1977) Biochim Biophys Acta 495:212–219PubMedGoogle Scholar
  47. 47.
    Gonias SL, Roche PA, Pizzo SV (1986) Biochem J 235:559–567PubMedGoogle Scholar
  48. 48.
    Marklund SL, Holme E, Hellner L (1982) Clin Chim Acta 126:41–51PubMedCrossRefGoogle Scholar
  49. 49.
    Marklund SL (1984) J Clin Invest 74:1398–1403PubMedCrossRefGoogle Scholar
  50. 50.
    Kessler H, Pajonk F-G, Meisser P, Schneider-Axmann T, Hoffmann KH, Supprian T, Herrmann W, Obeid R, Multhaup G, Falkai P, Bayer TA (2006) J Neural Transm 113:1763–1769PubMedCrossRefGoogle Scholar
  51. 51.
    Akiba S, Neriishi K, Blot WJ, Kabuto M, Stevens RG, Kato H, Land CE (1991) Cancer 67:1707–1712PubMedCrossRefGoogle Scholar
  52. 52.
    Attri S, Sharma N, Jahagirdar S, Thapa BR, Prasad R (2006) Pediatr Res 59:593–597PubMedCrossRefGoogle Scholar
  53. 53.
    Wolf TL, Kotun J, Meador-Woodruff JH (2006) Schizophr Res 86:167–171PubMedCrossRefGoogle Scholar
  54. 54.
    Konofal E, Lecendreux M, Arnulf I, Mouren MC (2004) Arch Pediatr Adolesc Med 158:1113–1115PubMedCrossRefGoogle Scholar
  55. 55.
    del Castillo Busto ME, Montes-Bayon M, Blanco-Gonzalez E, Meija J, Sanz-Medel A (2005) Anal Chem 77:5615–5621PubMedCrossRefGoogle Scholar
  56. 56.
    Arizaga Rodriguez S, Blanco Gonzalez E, Alvarez Llamas G, Montes-Bayon M, Sanz-Medel A (2005) Anal Bioanal Chem 383:390–397PubMedCrossRefGoogle Scholar
  57. 57.
    Saito Y, Saito K, Hirano Y, Ikeya K, Suzuki H, Shishikura K, Manno S, Takakuwa Y, Nakagawa K, Iwasa A, Fujikawa S, Moriya M, Mizoguchi K, Golden BE, Osawa M (2002) J Pediatr 140:267–269PubMedCrossRefGoogle Scholar
  58. 58.
    Scheinberg IH, Gitlin D (1952) Science 116:484–489PubMedCrossRefGoogle Scholar
  59. 59.
    Gailer J (2002) Appl Organomet Chem 16:701–707CrossRefGoogle Scholar
  60. 60.
    Gailer J (2007) Coord Chem Rev 251:234–254CrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • Shawn A. Manley
    • 1
  • Simon Byrns
    • 1
  • Andrew W. Lyon
    • 2
  • Peter Brown
    • 3
  • Jürgen Gailer
    • 1
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada
  2. 2.Department of Pathology and Laboratory MedicineUniversity of Calgary and Calgary Laboratory ServicesCalgaryCanada
  3. 3.Teledyne Leeman LabsHudsonUSA

Personalised recommendations