Infrared spectroscopic characterization of copper–polyhistidine from 1,800 to 50 cm−1: model systems for copper coordination

Original Paper

Abstract

Poly(l-histidine) and imidazole in the presence of copper cations have been investigated by means of Fourier transform infrared (IR) spectroscopy in the mid- and far-IR spectral range to establish specific marker bands of the copper-coordination site in metalloproteins as a function of pH as well as the effect of the coordination on the amino acid contributions. Whereas the well-known mid-IR region was specific for the secondary structure of the protein mimics, the far-IR region included contributions from the metal–ligand vibrations. The addition of copper led to secondary structure changes of poly(l-histidine) at neutral and basic pD and to specific shifts of ring vibrations. At pD 9.5 the addition of copper deprotonated the nitrogen atoms of the imidazole ring and the backbone. At neutral pD the copper cations were coordinated by the N3 atom of the imidazole ring. Copper–imidazole vibrations at neutral pD were observed at 154 and 128 cm−1. Signals observed at 313 and 162 cm−1 were assigned to metal–ligand vibrations arising from copper–poly(l-histidine) complexes with a negatively charged imidazole ring.

Keywords

Copper–histidine Far-infrared spectroscopy Metal–ligand vibrations 

Abbreviations

FTIR

Fourier transform infrared

His

Histidine

Im

Imidazole

IR

Infrared

4-MeIm

4-Methylimidazole

PLH

Poly(l-histidine)

Symbols

υ

Stretching vibration

δ

Bending vibration

δdef

Deformation vibration

γ

Wagging vibration

τ

Torsion vibration

References

  1. 1.
    Dörr S, Schade U, Hellwig P, Ortolani M (2007) J Phys Chem B 111:14418–14422PubMedCrossRefGoogle Scholar
  2. 2.
    Ebbinghaus S, Kim SJ, Heyden M, Yu X, Gruebele M, Leitner DM, Havenith M (2008) J Am Chem Soc 130:2374–2375PubMedCrossRefGoogle Scholar
  3. 3.
    Brubach JB, Mermet A, Filabozzi A, Gerschel A, Roy P (2005) Chem Phys 122:184509–184515Google Scholar
  4. 4.
    Zelsmann HR (1995) J Mol Struct 350:95–114CrossRefGoogle Scholar
  5. 5.
    Williams PA, Blackburn NJ, Sanders D, Bellamy H, Stura EA, Fee JA, McRee DE (1999) Nat Struct Biol 6:509–516PubMedCrossRefGoogle Scholar
  6. 6.
    Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) EMBO J 19:1766–1776PubMedCrossRefGoogle Scholar
  7. 7.
    Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, McRee DE, Hirst J, Stout D, Fee JA (2003) Biochemistry 42:7303–7317PubMedCrossRefGoogle Scholar
  8. 8.
    Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–570PubMedCrossRefGoogle Scholar
  9. 9.
    Frieden E, Osaki S, Kobayashi H (1965) J Gen Physiol 49:213–252PubMedCrossRefGoogle Scholar
  10. 10.
    Beinert H, Holm RH, Münck E (1997) Science 277:653–659PubMedCrossRefGoogle Scholar
  11. 11.
    Meyer J (2008) J Biol Inorg Chem 13:157–170PubMedCrossRefGoogle Scholar
  12. 12.
    Rees DC (2002) Annu Rev Biochem 71:221–246PubMedCrossRefGoogle Scholar
  13. 13.
    Miura T, Satoh T, Hori-i A, Takeuchi H (1998) J Raman Spectrosc 29:41–47CrossRefGoogle Scholar
  14. 14.
    Wang X, Lee JS, Yang DS (2006) J Phys Chem A 110:12777–12784PubMedCrossRefGoogle Scholar
  15. 15.
    Mesu JG, Visser T, Soulimani F, Weckhuysen BM (2005) Vib Spectrosc 39:114–125CrossRefGoogle Scholar
  16. 16.
    Mesu JG, Visser T, Soulimani F, Van Faassen EE, De Peinder P, Beale AM, Weckhuysen BM (2006) Inorg Chem 45:1960–1971PubMedCrossRefGoogle Scholar
  17. 17.
    Deschamps P, Kulkarni PP, Gautam-Basak M, Sarkar B (2005) Coord Chem Rev 249:895–909CrossRefGoogle Scholar
  18. 18.
    Mesu GJ, Visser T, Beale AM, Soulimani F, Weckhuysen BM (2006) Chem Eur J 12:7167–7177CrossRefGoogle Scholar
  19. 19.
    Bi X, Yang KL (2007) Langmuir 23:11067–11073PubMedCrossRefGoogle Scholar
  20. 20.
    Deschamps P, Kulkarni PP, Sarkar B (2004) Inorg Chem 43:3338–3340PubMedCrossRefGoogle Scholar
  21. 21.
    Sigel H, McCormick DB (1971) J Am Chem Soc 93:2041–2044PubMedCrossRefGoogle Scholar
  22. 22.
    Torreggiani A, Tamba M, Bonora S, Fini G (2003) Biopolymers 72:290–298PubMedCrossRefGoogle Scholar
  23. 23.
    Drożdżewski P, Kordon E (2000) Spectrochim Acta A Mol Biomol Spectrosc 56:1299–1304CrossRefGoogle Scholar
  24. 24.
    Cheruzel LE, Cecil MR, Edison SE, Mashuta MS, Baldwin MJ, Buchanan RB (2006) Inorg Chem 45:3191–3202PubMedCrossRefGoogle Scholar
  25. 25.
    Jakab NI, Gyurcsik B, Körtvélyesi T, Vosekalna I, Jensen J, Larsen E (2007) J Inorg Biochem 101:1376–1385PubMedCrossRefGoogle Scholar
  26. 26.
    Kállay C, Várnagy K, Malandrinos G, Hadjiliadis N, Sanna D, Sόvágό I (2006) Dalton Trans 4545–4552Google Scholar
  27. 27.
    White KN, Sen I, Szundi I, Landaverry YR, Bira LE, Konopelski JP, Olmstead MM, Einarsdόttir Ó (2007) Chem Commun 3252–3254Google Scholar
  28. 28.
    Materazzi S, Kurdziel K, Tentolini U, Bacaloni A, Aquili S (2003) Thermochim Acta 395:133–137CrossRefGoogle Scholar
  29. 29.
    Materazzi S, D’Ascenzo G, Aquili S, Kadish KM, Bear JL (2003) Thermochim Acta 397:129–134CrossRefGoogle Scholar
  30. 30.
    Liang HC, Dahan M, Karlin KD (1999) Curr Opin Chem Biol 3:168–175PubMedCrossRefGoogle Scholar
  31. 31.
    Inoue T, Sugawara H, Hamanaka S, Tsukui H, Suzuki E, Kohzuma T, Kai Y (1999) Biochemistry 38:6063–6069PubMedCrossRefGoogle Scholar
  32. 32.
    Ellis MJ, Dodd FE, Strange RW, Prudêncio M, Sawers G, Eady RR, Hasnain SS (2001) Acta Crystallogr D Biol Crystallogr D57:1110–1118CrossRefGoogle Scholar
  33. 33.
    Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG (2006) J Am Chem Soc 128:5834–5850PubMedCrossRefGoogle Scholar
  34. 34.
    Hough MA, Hasnain SS (2003) Structure 11:937–946PubMedCrossRefGoogle Scholar
  35. 35.
    Colbert CL, Couture M, Eltis LD, Bolin JT (2000) Structure 8:1267–1278PubMedCrossRefGoogle Scholar
  36. 36.
    Kolling DJ, Brunzelle JS, Lhee SM, Crofts AR, Nair SK (2007) Structure 15:29–38PubMedCrossRefGoogle Scholar
  37. 37.
    Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA, Xia D (2003) Biochemistry 42:9067–9080PubMedCrossRefGoogle Scholar
  38. 38.
    Iwaki M, Yakovlev G, Hirst J, Osyczka A, Dutton PL, Marshall D, Rich PR (2005) Biochemistry 44:4230–4237PubMedCrossRefGoogle Scholar
  39. 39.
    Loeffen PW, Pettifer RF, Fillaux F, Kearley GJ (1995) J Chem Phys 103:8444–8455CrossRefGoogle Scholar
  40. 40.
    Hasegawa K, Ono TA, Noguchi T (2000) J Phys Chem B 104:4253–4265CrossRefGoogle Scholar
  41. 41.
    Hasegawa K, Ono TA, Noguchi T (2002) J Phys Chem A 106:3377–3390CrossRefGoogle Scholar
  42. 42.
    Pecht I, Levitzki A, Anbar M (1967) J Am Chem Soc 89:1587–1591PubMedCrossRefGoogle Scholar
  43. 43.
    Levitzki A, Pecht I, Berger A (1972) J Am Chem Soc 94:6844–6849PubMedCrossRefGoogle Scholar
  44. 44.
    Dovbeshko G, Berezhinsky L (1998) J Mol Struct 450:121–128CrossRefGoogle Scholar
  45. 45.
    Xie A, He Q, Miller L, Sclavi B, Chance MR (1999) Biopolymers 49:591–603CrossRefGoogle Scholar
  46. 46.
    Maklakov LI, Aksakova SV (1997) Russ Chem Rev 66:375–388CrossRefGoogle Scholar
  47. 47.
    Berthomieu C, Marboutin L, Dupeyrat F, Bouyer P (2006) Biopolymers 82:363–367PubMedCrossRefGoogle Scholar
  48. 48.
    Dörr S, Hellwig P (2008) Vib Spectrosc 47:59–65CrossRefGoogle Scholar
  49. 49.
    Chu HA, Gardner MT, Hillier W, Babcock GT (2000) Photosynth Res 66:57–63PubMedCrossRefGoogle Scholar
  50. 50.
    Kowalik-Jankowska T, Ruta M, Wiśniewska K, Łankiewicz L (2003) J Inorg Chem 95:270–282Google Scholar
  51. 51.
    Kállay C, Nagy Z, Várnagy K, Malandrinos G, Hadjiliadis N, Sόvágό I (2007) Bioinorg Chem Appl 30394 Google Scholar
  52. 52.
    Barth A (2000) Prog Biophys Mol Biol 74:141–173PubMedCrossRefGoogle Scholar
  53. 53.
    Muehlinghaus J, Zundel G (1971) Biopolymers 10:711–719PubMedCrossRefGoogle Scholar
  54. 54.
    Kong J, Yu S (2007) Acta Biochim Biophys Sin 39:549–559PubMedCrossRefGoogle Scholar
  55. 55.
    Dong A, Huang P, Caughey WS (1990) Biochemistry 29:3303–3308PubMedCrossRefGoogle Scholar
  56. 56.
    He WZ, Newell WR, Haris PI, Chapman D, Barber J (1991) Biochemistry 30:4552–4559PubMedCrossRefGoogle Scholar
  57. 57.
    Kalnin NN, Baikalov IA, Venyaminov SY (1990) Biopolymers 30:1273–1280PubMedCrossRefGoogle Scholar
  58. 58.
    Miyazawa T, Shimanouchi T, Mizushima SI (1958) J Chem Phys 29:611–616CrossRefGoogle Scholar
  59. 59.
    Jung C (2000) Mol Recogn 13:325–351CrossRefGoogle Scholar
  60. 60.
    Wolpert M, Hellwig P (2006) Spectrochim Acta A Mol Biomol Spectrosc 64:987–1001PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, Institut de Chimie, UMR 7177Université Louis PasteurStrasbourgFrance

Personalised recommendations