Determining Rieske cluster reduction potentials

  • Eric N. Brown
  • Rosmarie Friemann
  • Andreas Karlsson
  • Juan V. Parales
  • Manon M.-J. Couture
  • Lindsay D. Eltis
  • S. Ramaswamy
Original Paper

Abstract

The Rieske iron–sulfur proteins have reduction potentials ranging from −150 to +400 mV. This enormous range of potentials was first proposed to be due to differing solvent exposure or even protein structure. However, the increasing number of available crystal structures for Rieske iron–sulfur proteins has shown this not to be the case. Colbert and colleagues proposed in 2000 that differences in the electrostatic environment, and not structural differences, of a Rieske proteins are responsible for the wide range of reduction potentials observed. Using computational simulation methods and the newly determined structure of Pseudomonas sp. NCIB 9816-4 naphthalene dioxygenase Rieske ferredoxin (NDO-F9816-4), we have developed a model to predict the reduction potential of Rieske proteins given only their crystal structure. The reduction potential of NDO-F9816-4, determined using a highly oriented pyrolytic graphite electrode, was −150 ± 2 mV versus the standard hydrogen electrode. The predicted reduction potentials correlate well with experimentally determined potentials. Given this model, the effect of protein mutations can be evaluated. Our results suggest that the reduction potential of new proteins can be estimated with good confidence from 3D structures of proteins. The structure of NDO-F9816-4 is the most basic Rieske ferredoxin structure determined to date. Thus, the contributions of additional structural motifs and their effects on reduction potential can be compared with respect to this base structure.

Keywords

Electrochemistry X-ray crystallography Rieske ferredoxin 

References

  1. 1.
    Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Science 277:60–66PubMedCrossRefGoogle Scholar
  2. 2.
    Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Science 281:64–71PubMedCrossRefGoogle Scholar
  3. 3.
    Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Structure 5:1613–1625PubMedCrossRefGoogle Scholar
  4. 4.
    Lange C, Nett JH, Trumpower BL, Hunte C (2001) EMBO J 20:6591PubMedCrossRefGoogle Scholar
  5. 5.
    Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, Mcree DE, Hirst J, Stout CD, Fee JA (2003) Biochemistry 42:7303PubMedCrossRefGoogle Scholar
  6. 6.
    Ferraro D, Gakhar L, Ramaswamy S (2005) Biochem Biophys Res Commun 338:175–190PubMedCrossRefGoogle Scholar
  7. 7.
    Ferraro DJ, Brown EN, Yu CL, Parales RE, Gibson DT, Ramaswamy S (2007) BMC Struct Biol 7:10PubMedCrossRefGoogle Scholar
  8. 8.
    Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H (2006) Structure 14:1779–1789PubMedCrossRefGoogle Scholar
  9. 9.
    Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Structure 9:125–132PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson GL, Williams J, Hille R (1992) J Biol Chem 267:23674PubMedGoogle Scholar
  11. 11.
    Bönisch H, Schmidt CL, Schaefer G, Landstein R (2002) J Mol Biol 319:791PubMedCrossRefGoogle Scholar
  12. 12.
    Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Structure 5:1613PubMedCrossRefGoogle Scholar
  13. 13.
    Colbert CL, Couture MMJ, Eltis LD, Bolin JT (2000) Structure 8:1267–1278PubMedCrossRefGoogle Scholar
  14. 14.
    Kolling DJ, Brunzelle JS, Lhee S, Crofts AR, Nair SK (2007) Structure 15:29–38PubMedCrossRefGoogle Scholar
  15. 15.
    Nam J, Noguchi H, Fujimoto Z, Mizuno H, Ashikawa Y, Abo M, Fushinobu S, Kobashi N, Wakagi T, Iwata K, Yoshida T, Habe H, Yamane H, Omori T, Nojiri H (2005) Proteins 58:779–789PubMedCrossRefGoogle Scholar
  16. 16.
    Stellwagen E (1978) Nature 275:73–74PubMedCrossRefGoogle Scholar
  17. 17.
    Schlauder GG, Kassner RJ (1979) J Biol Chem 254:4110–4113PubMedGoogle Scholar
  18. 18.
    Meyer J (2008) J Biol Inorg Chem 13:157–170PubMedCrossRefGoogle Scholar
  19. 19.
    Zu Y, Bernardo SD, Yagi T, Hirst J (2002) Biochemistry 41:10056–10069PubMedCrossRefGoogle Scholar
  20. 20.
    Zu Y, Couture M, Kolling D, Crofts A, Eltis L, Fee J, Hirst J (2003) Biochemistry 42:12400–12408PubMedCrossRefGoogle Scholar
  21. 21.
    Schröter T, Hatzfeld OM, Gemeinhardt S, Korn M, Friedrich T, Ludwig B, Link TA (1998) Eur J Biochem 255:100–106PubMedCrossRefGoogle Scholar
  22. 22.
    Denke E, Merbitz-Zahradnik T, Hatzfeld OM, Snyder CH, Link TA, Trumpower BL (1998) J Biol Chem 273:9085–9093PubMedCrossRefGoogle Scholar
  23. 23.
    Moore GR, Pettigrew GW, Rogers NK (1986) Proc Natl Acad Sci USA 83:4998–4999PubMedCrossRefGoogle Scholar
  24. 24.
    Langen R, Jensen GM, Jacob U, Stephens PJ, Warshel A (1992) J Biol Chem 267:25625–25627PubMedGoogle Scholar
  25. 25.
    Stephens PJ, Jollie DR, Warshel A (1996) Chem Rev 96:2491–2513PubMedCrossRefGoogle Scholar
  26. 26.
    Bugg TD, Ramaswamy S (2008) Curr Opin Chem Biol 12:1–7CrossRefGoogle Scholar
  27. 27.
    Couture MMJ, Colbert CL, Babini E, Rosell FI, Mauk AG, Bolin JT, Eltis LD (2001) Biochemistry 40:84–92PubMedCrossRefGoogle Scholar
  28. 28.
    Suen WC (1991) Genetic and biochemical studies of the ferrdoxin TOL component of toluene dioxygenase from Pseudomonas putida FI. University of Iowa, Iowa CityGoogle Scholar
  29. 29.
    Haigler BB, Gibson DT (1990) J Bacteriol 172:465–468PubMedGoogle Scholar
  30. 30.
    Collaborative Computational Project Number 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763Google Scholar
  31. 31.
    Powell HR (1999) Acta Crystallogr D Biol Crystallogr 55:1690–1695PubMedCrossRefGoogle Scholar
  32. 32.
    Evans PR (1993) In: Data collection and processing. CCP4 study weekend, pp 114–122Google Scholar
  33. 33.
    Read RJ (1999) Acta Crystallogr D Biol Crystallogr 55:1759–1764PubMedCrossRefGoogle Scholar
  34. 34.
    Hamiltona, Rollett, Sparks (1965) Acta Crystallogr 18:129–130Google Scholar
  35. 35.
    Diederichs K, Karplus PA (1997) Nat Struct Biol 4:269–275PubMedCrossRefGoogle Scholar
  36. 36.
    Weiss M, Hilgenfeld R (1997) J Appl Crystallogr 30:203–205CrossRefGoogle Scholar
  37. 37.
    Weiss M (2001) J Appl Crystallogr 34:130–135CrossRefGoogle Scholar
  38. 38.
    Murshudov G, Vagin A, Dodson E (1996) In: The refinement of protein structures. CCP4 study weekend, pp 93–104Google Scholar
  39. 39.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255PubMedCrossRefGoogle Scholar
  40. 40.
    Pannu NJ, Murshudov GN, Lebedev A, Vagin AA, Wilson KS, Dodson EJ (1999) Acta Crystallogr D Biol Crystallogr 55:247–255CrossRefGoogle Scholar
  41. 41.
    Jones TA, Zou JY, Cowan SW, Kjelgaard M (1991) Acta Crystallogr A47:110–119Google Scholar
  42. 42.
    Kleywegt GJ, Zou JY, Kjeldgaard M, Jones TA (2001) In: Rossmann MG, Arnold E (eds) International tables for crystallography. Kluwer Academics Publishers, Dordrecht, pp 353–356, 366–367Google Scholar
  43. 43.
    Lamzin VS, Wilson KS (1993) Acta Crystallogr D Biol Crystallogr 49:129–147PubMedCrossRefGoogle Scholar
  44. 44.
    Lamzin VS, Wilson KS (1997) In: Carter C, Sweet B (eds) Methods in enzymology. Academic Press, San Diego, pp 269–305Google Scholar
  45. 45.
    Lamzin VS, Perrakis A, Wilson KS (2001) In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol F. Kluwer Academic Publishers, Dordrecht, pp 720–722Google Scholar
  46. 46.
    Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRefGoogle Scholar
  47. 47.
    Brown EN (2009) Rieske business: Rieske metal clusters in Rieske ferredoxins and Rieske dioxygenases. University of Iowa, Iowa CityGoogle Scholar
  48. 48.
    Bernstein FC, Koetzle TF, Williams GJB, Meyer JEF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542PubMedCrossRefGoogle Scholar
  49. 49.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  50. 50.
    Berman HM, Henrick K, Nakamura H (2003) Nat Struct Biol 10:980PubMedCrossRefGoogle Scholar
  51. 51.
    Wallace AC, Laskowski RA, Thorton JM (1995) Protein Eng 8:127–134PubMedCrossRefGoogle Scholar
  52. 52.
    DeLano WL (2000) The PyMOL molecular graphics system, version 0.98. DeLano Scientific, San CarlosGoogle Scholar
  53. 53.
    Kleywegt GJ, Jones TA (1994) A super position. Biomedical Centre, Uppsala University, SwedenGoogle Scholar
  54. 54.
    Alexov E, Gunner M (1997) Biophys J 74:2075–2093Google Scholar
  55. 55.
    Georgescu RE, Alexov EG, Gunner MR (2002) Biophys J 83:1731–1748PubMedCrossRefGoogle Scholar
  56. 56.
    Ullmann GM, Noodleman L, Case DA (2002) J Biol Inorg Chem 7:632–639PubMedCrossRefGoogle Scholar
  57. 57.
    Rocchia W, Alexov E, B H (2001) J Phys Chem B 105:6507–6514CrossRefGoogle Scholar
  58. 58.
    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comp Chem 23:128–137CrossRefGoogle Scholar
  59. 59.
    R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  60. 60.
    Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–579PubMedCrossRefGoogle Scholar
  61. 61.
    Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586PubMedCrossRefGoogle Scholar
  62. 62.
    Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Biochemistry 43:1667–1674PubMedCrossRefGoogle Scholar
  63. 63.
    Leggate EJ, Hirst J (2005) Biochemistry 44:7048–7058PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidt CL, Hatzfeld OM, Petersen A, Link TA, Schafe G (1997) Biochem Biophys Res Commun 234:283–287PubMedCrossRefGoogle Scholar
  65. 65.
    Merbitz-Zahradnik T, Zwicker K, Nett J, Link T, Trumpower B (2003) Biochemistry 42:13637–13645PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang H, Carrell CJ, Huang D, Sled V, Ohnishi T, Smith JL, Cramer WA (1996) J Biol Chem 271:31360–31366PubMedCrossRefGoogle Scholar
  67. 67.
    Link TA, Saynovits M, Assmann C, Iwata S, Ohnishi T, von Jagow G (1996) Eur J Biochem 237:71–75PubMedCrossRefGoogle Scholar
  68. 68.
    Shao J (1997) Statistica Sinica 7:221–264Google Scholar
  69. 69.
    Gunner MR, Alexov E (2000) Biochim Biophys Acta 1458:63–87PubMedCrossRefGoogle Scholar
  70. 70.
    Warshel A, Papazyan A (1998) Curr Opin Struct Biol 8:211–217PubMedCrossRefGoogle Scholar
  71. 71.
    Warhsel A, Sharma PK, Kato M, Parson WW (2006) Biochim Biophys Acta 1764:1647–1676Google Scholar
  72. 72.
    Noodleman L, Normal JGJ, Osborne JH, Aizman A, Case DA (1985) J Am Chem Soc 107:3418–3426CrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • Eric N. Brown
    • 1
  • Rosmarie Friemann
    • 2
  • Andreas Karlsson
    • 2
  • Juan V. Parales
    • 3
  • Manon M.-J. Couture
    • 4
  • Lindsay D. Eltis
    • 5
  • S. Ramaswamy
    • 1
  1. 1.Department of BiochemistryUniversity of IowaIowa CityUSA
  2. 2.Department of Molecular BiologySwedish University of Agricultural Sciences, Biomedical CentreUppsalaSweden
  3. 3.Section of MicrobiologyUniversity of CaliforniaDavisUSA
  4. 4.Medicago R&DSte-FoyCanada
  5. 5.Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations