JBIC Journal of Biological Inorganic Chemistry

, Volume 13, Issue 8, pp 1239–1248 | Cite as

Interplay between glutathione, Atx1 and copper: X-ray absorption spectroscopy determination of Cu(I) environment in an Atx1 dimer

  • David Poger
  • Clara Fillaux
  • Roger Miras
  • Serge Crouzy
  • Pascale Delangle
  • Elisabeth Mintz
  • Christophe Den Auwer
  • Michel Ferrand
Original Paper

Abstract

X-ray absorption techniques have been used to characterise the primary coordination sphere of Cu(I) bound to glutathionate (GS), to Atx1 and in Cu2I(GS)2(Atx1)2, a complex recently proposed as the major form of Atx1 in the cytosol. In each complex, Cu(I) was shown to be triply coordinated. When only glutathione is provided, each Cu(I) is triply coordinated by sulphur atoms in the binuclear complex CuI2(GS)5, involving bridging and terminal thiolates. In the presence of Atx1 and excess of glutathione, under conditions where CuI2(GS)2(Atx1)2 is formed, each Cu(I) is triply coordinated by sulphur atoms. Given these constraints, there are two different ways for Cu(I) to bridge the Atx1 dimer: either both Cu(I) ions contribute to bridging the dimer, or only one Cu(I) ion is responsible for bridging, the other one being coordinated to two glutathione molecules. These two models are discussed as regards Cu(I) transfer to Ccc2a.

Keywords

X-ray absorption spectroscopy Metallochaperones Metal transport Copper Glutathione 

Abbreviations

CSD

Cambridge Structural Database

EPPS

4-(2-Hydroxyethyl)-1-piperazinepropanesulphonic acid

EXAFS

Extended X-ray absorption fine structure

FDM

Finite-difference method

GSH

Glutathione

MST

Multiple-scattering theory

PAR

4-(2-Pyridylazo)resorcinol

XANES

X-ray absorption near-edge structure

XAS

X-ray absorption spectroscopy

References

  1. 1.
    Harris ZL, Gitlin JD (1996) Am J Clin Nutr 63:836S–841SPubMedGoogle Scholar
  2. 2.
    O’Halloran TV, Culotta VC (2000) J Biol Chem 275:25057–25060PubMedCrossRefGoogle Scholar
  3. 3.
    Freedman JH, Ciriolo MR, Peisach J (1989) J Biol Chem 264:5598–5605PubMedGoogle Scholar
  4. 4.
    Dringen R, Hamprecht B (1998) Dev Neurosci 20:401–407PubMedCrossRefGoogle Scholar
  5. 5.
    Ciriolo MR, Desideri A, Paci M, Rotilio G (1990) J Biol Chem 265:11030–11034PubMedGoogle Scholar
  6. 6.
    Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Science 278:853–856PubMedCrossRefGoogle Scholar
  7. 7.
    Arnesano F, Banci L, Bertini I, Huffman DL, O’Halloran TV (2001) Biochemistry 40:1528–1539PubMedCrossRefGoogle Scholar
  8. 8.
    Banci L, Bertini I, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) J Biol Chem 276:8415–8426PubMedCrossRefGoogle Scholar
  9. 9.
    Huffman DL, O’Halloran TV (2000) J Biol Chem 275:18611–18614PubMedCrossRefGoogle Scholar
  10. 10.
    Tanchou V, Gas F, Urvoas A, Cougouluegne F, Ruat S, Averseng O, Quemeneur E (2004) Biochem Biophys Res Commun 325:388–394PubMedCrossRefGoogle Scholar
  11. 11.
    Kihlken MA, Leech AP, Le Brun NE (2002) Biochem J 368:729–739PubMedCrossRefGoogle Scholar
  12. 12.
    Urvoas A, Moutiez M, Estienne C, Couprie J, Mintz E, Le Clainche L (2004) Eur J Biochem 271:993–1003PubMedCrossRefGoogle Scholar
  13. 13.
    Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Borrelly GP, Robinson NJ (2004) J Biol Chem 279:27502–27510PubMedCrossRefGoogle Scholar
  14. 14.
    Banci L, Bertini I, Del Conte R, Mangani S, Meyer-Klaucke W (2003) Biochemistry 42:2467–2474PubMedCrossRefGoogle Scholar
  15. 15.
    Miras R, Morin I, Jacquin O, Cuillel M, Guillain F, Mintz E (2008) J Biol Inorg Chem 13:195–205PubMedCrossRefGoogle Scholar
  16. 16.
    Meister A, Anderson ME (1983) Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  17. 17.
    Fujisawa K, Imai S, Kitajima N, Moro-oka Y (1998) Inorg Chem 37:168–169CrossRefGoogle Scholar
  18. 18.
    Fujisawa K, Imai S, Suzuki S, Moro-oka Y, Miyashita Y, Yamada Y, Okamoto K (2000) J Inorg Biochem 82:229–238PubMedCrossRefGoogle Scholar
  19. 19.
    Stergioudis GA, Kokkou SC, Rentzeperis PJ (1987) Acta Crystallogr Sect C 43:1685–1688CrossRefGoogle Scholar
  20. 20.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541PubMedCrossRefGoogle Scholar
  21. 21.
    Newville M, Livins P, Yacoby Y, Rehr JJ, Stern EA (1993) Phys Rev B 47:14126–14131CrossRefGoogle Scholar
  22. 22.
    Joly Y (2001) Phys Rev B 63:5120–5129CrossRefGoogle Scholar
  23. 23.
    Rehr JJ, Stern EA, Martin RL, Davidson ER (1978) Phys Rev B 17:560–565CrossRefGoogle Scholar
  24. 24.
    Michalowicz A (1997) J Phys IV 7(C2):235–236Google Scholar
  25. 25.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654CrossRefGoogle Scholar
  26. 26.
    Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, WallingfordGoogle Scholar
  28. 28.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872CrossRefGoogle Scholar
  29. 29.
    Fuchs JF, Nedev H, Poger D, Ferrand M, Brenner V, Dognon JP, Crouzy S (2006) J Comput Chem 27:837–856PubMedCrossRefGoogle Scholar
  30. 30.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  31. 31.
    Kau L-S, Spira-Solomon DJ, Penner-Hahn JE, Hogson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6442CrossRefGoogle Scholar
  32. 32.
    Pickering IJ, George GN, Dameron CT, Kurz B, Winge DR, Dance IG (1993) J Am Chem Soc 115:9498–9505CrossRefGoogle Scholar
  33. 33.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217CrossRefGoogle Scholar
  34. 34.
    Poger D, Fuchs JF, Nedev H, Ferrand M, Crouzy S (2005) FEBS Lett 579:5287–5292PubMedCrossRefGoogle Scholar
  35. 35.
    Rousselot-Pailley P, Seneque O, Lebrun C, Crouzy S, Boturyn D, Dumy P, Ferrand M, Delangle P (2006) Inorg Chem 45:5510–5520PubMedCrossRefGoogle Scholar
  36. 36.
    McCall KA, Fierke CA (2000) Anal Biochem 284:307–315PubMedCrossRefGoogle Scholar
  37. 37.
    Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG (1979) Acta Crystallogr Sect B 35:2331–2339CrossRefGoogle Scholar
  38. 38.
    Linck RC, Spahn CW, Rauchfuss TB, Wilson SR (2003) J Am Chem Soc 125:8700–8701PubMedCrossRefGoogle Scholar
  39. 39.
    Pilloni G, Longato B, Bandoli G, Corain B (1997) J Chem Soc Dalton Trans 5:819–826CrossRefGoogle Scholar
  40. 40.
    Ruiz J, Quesada R, Riera V, Garcia-Granda S, Diaz MR (2003) Chem Commun 16:2028–2029Google Scholar
  41. 41.
    Rao PV, Bhaduri S, Jiang J, Holm RH (2004) Inorg Chem 43:5833–5849PubMedCrossRefGoogle Scholar
  42. 42.
    Österberg R, Ligaarden R, Persson D (1979) J Inorg Biochem 10:341–355PubMedCrossRefGoogle Scholar
  43. 43.
    Corazza A, Harvey I, Sadler PJ (1996) Eur J Biochem 236:697–705PubMedCrossRefGoogle Scholar
  44. 44.
    Seidel WW, Ibarra Arias MD, Schaffrath M, Bergander K (2004) Dalton Trans 14:2053–2054PubMedCrossRefGoogle Scholar
  45. 45.
    Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Nat Struct Biol 7:766–771PubMedCrossRefGoogle Scholar
  46. 46.
    Ralle M, Lutsenko S, Blackburn NJ (2003) J Biol Chem 278:23163–23170PubMedCrossRefGoogle Scholar
  47. 47.
    Ralle M, Lutsenko S, Blackburn NJ (2004) J Inorg Biochem 98:765–774PubMedCrossRefGoogle Scholar
  48. 48.
    García-Vázqueza JA, Romeroa J, Castroa R, Sousa A, Roseb DJ, Zubietab J (1997) Inorg Chim Acta 260:221–223CrossRefGoogle Scholar
  49. 49.
    Janssen MD, Spek AL, Grove DM, van Koten G (1996) Inorg Chem 35:4078–4081PubMedCrossRefGoogle Scholar
  50. 50.
    Blackburn NJ, de Vries S, Barr ME, Houser RP, Tolman WB, Sanders D, Fee JA (1997) J Am Chem Soc 119:6135–6143CrossRefGoogle Scholar
  51. 51.
    Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A, Voulgaris P (2006) Nat Chem Biol 2:367–368PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • David Poger
    • 1
    • 2
    • 3
    • 6
  • Clara Fillaux
    • 5
  • Roger Miras
    • 1
    • 2
    • 3
  • Serge Crouzy
    • 1
    • 2
    • 3
  • Pascale Delangle
    • 4
  • Elisabeth Mintz
    • 1
    • 2
    • 3
  • Christophe Den Auwer
    • 5
  • Michel Ferrand
    • 1
    • 2
    • 3
  1. 1.CNRS Laboratoire de Chimie et Biologie des Métaux, UMR 5249GrenobleFrance
  2. 2.CEA Laboratoire de Chimie et Biologie des MétauxGrenobleFrance
  3. 3.Université Joseph Fourier GrenobleGrenobleFrance
  4. 4.CEA, DSM, INAC, SCIB (UMR_E 3 CEA/UJF), Laboratoire de Reconnaissance Ionique et de Chimie de CoordinationGrenobleFrance
  5. 5.CEA, DEN, DRCP, SCPS, Laboratoire de Conception des Architectures MoléculairesBagnols sur CèzeFrance
  6. 6.School of Molecular and Microbial SciencesThe University of Queensland, St. LuciaBrisbaneAustralia

Personalised recommendations