JBIC Journal of Biological Inorganic Chemistry

, Volume 13, Issue 7, pp 1039–1053 | Cite as

Zinc and antibiotic resistance: metallo-β-lactamases and their synthetic analogues



Antibiotic resistance to clinically employed β-lactam antibiotics currently poses a very serious threat to the clinical community. The origin of this resistance is the expression of several β-lactamases that effectively hydrolyze the amide bond in β-lactam compounds. These β-lactamases are classified into two major categories: serine β-lactamases and metallo-β-lactamases. The metalloenzymes use one or two zinc ions in their active sites to catalyze the hydrolysis of all classes of β-lactam antibiotics, including carbapenems. As there is no clinically useful inhibitor for the metallo-β-lactamases, it is important to understand the mechanism by which these enzymes catalyze the hydrolysis of antibiotics. In this regard, the development of synthetic analogues will be very useful in understanding the mechanism of action of metallo-β-lactamases. This review highlights some important contributions made by various research groups in the area of synthetic analogues of metallo-β-lactamases, with major emphasis on the role of dinuclear Zn(II) complexes in the hydrolysis of β-lactam antibiotics.

Graphical abstract

The production of metallo-β-lactamases by bacteria is becoming a serious threat to the clinical community because these enzymes are responsible for the development of antibiotic resistance to the commonly employed β-lactam antibiotics. To understand the mechanism of the hydrolysis of the β-lactam ring in the antibiotics by metallo-β-lactamases, a great deal of effort has been directed to the design and synthesis of biomimetic models for these enzymes. This review highlights some important contributions made by various research groups in the area of synthetic analogues of metallo-β-lactamases, with major emphasis on the role of dinuclear Zn(II) complexes in the hydrolysis of β-lactam antibiotics.Open image in new window


Antibiotics Drug resistance Metallo-β-lactamase Synthetic mimics Zinc enzymes 



This study was supported by the Department of Science and Technology (DST), New Delhi, India. G.M. acknowledges the DST for the award of Ramanna Fellowship and A.T. thanks the University Grants Commission (UGC), New Delhi, for a research fellowship.


  1. 1.
    Williams RJP (1989) In: Mills CF (ed) Zinc in human biology. Springer, Berlin, pp 15–31Google Scholar
  2. 2.
    Wilcox DE (1996) Chem Rev 96:2435–2458 and references thereinGoogle Scholar
  3. 3.
    Lipscomb WN, Sträter N (1996) Chem Rev 96:2375–2433 and references thereinGoogle Scholar
  4. 4.
    Bock WC, Katz AK, Glusker JP (1995) J Am Chem Soc 117:3754–3765CrossRefGoogle Scholar
  5. 5.
    Bode W, Gomisruth FX, Huber R, Zwilling R, Stocker W (1992) Nature 358:164–167PubMedCrossRefGoogle Scholar
  6. 6.
    Ippolito JA, Christianson DW (1994) Biochemistry 33:15241–15249PubMedCrossRefGoogle Scholar
  7. 7.
    Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989) Nature 338:357–360PubMedCrossRefGoogle Scholar
  8. 8.
    Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748PubMedCrossRefGoogle Scholar
  9. 9.
    Christianson DW, Fierke CA (1996) Acc Chem Res 29:331–339CrossRefGoogle Scholar
  10. 10.
    Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69CrossRefGoogle Scholar
  11. 11.
    Sträter N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed 35:2025–2055Google Scholar
  12. 12.
    Steinhagen H, Helmchem G (1996) Angew Chem Int Ed 35:2339–2342CrossRefGoogle Scholar
  13. 13.
    Butler A (1998) Science 281:207–209PubMedCrossRefGoogle Scholar
  14. 14.
    Weston J (2005) Chem Rev 105:2151–2174 and references thereinGoogle Scholar
  15. 15.
    Bush K (1998) Clin Infect Dis 27:S48–S53 and references thereinGoogle Scholar
  16. 16.
    Livermore DM (1998) J Antimicrob Chemother 41(Suppl D):25–41PubMedCrossRefGoogle Scholar
  17. 17.
    Kurosaki H, Yamaguchi Y, Higashi T, Soga K, Matsueda S, Yumoto H, Misumi S, Yamagata Y, Arakawa Y, Goto M (2005) Angew Chem Int Ed 44:3861–3864CrossRefGoogle Scholar
  18. 18.
    Higgins PG, Wisplinghoff H, Stefanik D, Seifert H (2004) Antimicrob Agents Chemother 48:1586–1592PubMedCrossRefGoogle Scholar
  19. 19.
    Volbeda A, Lahm A, Sakiyama F, Suck D (1991) EMBO J 10:1607–1618PubMedGoogle Scholar
  20. 20.
    Crowder MW, Spencer J, Vila AJ (2006) Acc Chem Res 39:721–728 and references thereinGoogle Scholar
  21. 21.
    Carfi A, Pares S, Duee E, Galleni M, Duez C, Frère J-M, Dideberg O (1995) EMBO J 14:4914–4921PubMedGoogle Scholar
  22. 22.
    Carfi A, Duée E, Galleni M, Frère J-M, Dideberg O (1998) Acta Crystallogr D 54:313–323PubMedCrossRefGoogle Scholar
  23. 23.
    Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton B (1998) Biochemistry 37:12404–12411PubMedCrossRefGoogle Scholar
  24. 24.
    Paul-Soto R, Bauer R, Frère J-M, Galleni M, Meyer-Klaucke W, Nolting H, Rossolini GM, Seny de D, Hernandez-Valladares M, Zeppezauer M, Adolph H-W (1999) J Biol Chem 274:13242–13249PubMedCrossRefGoogle Scholar
  25. 25.
    Llarrul LI, Fabiane SM, Kowalski JM, Bennett B, Sutton BJ, Vila AJ (2007) J Biol Chem 282:18276–18285CrossRefGoogle Scholar
  26. 26.
    Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J (2007) Biochemistry 46:10664–10674PubMedCrossRefGoogle Scholar
  27. 27.
    Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM (2001) Antimicrob Agents Chemother 45:660–663PubMedCrossRefGoogle Scholar
  28. 28.
    Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836PubMedCrossRefGoogle Scholar
  29. 29.
    Paul-Soto R, Hernandez-Valladares M, Galleni M, Bauer R, Zeppezauer M, Frère J-M, Adolph H-W (1998) FEBS Lett 438:137–140PubMedCrossRefGoogle Scholar
  30. 30.
    Peraro MD, Vila AJ, Carloni P, Klein ML (2007) J Am Chem Soc 129:2808–2816CrossRefGoogle Scholar
  31. 31.
    Valladares MH, Felici A, Weber G, Adolph HW, Zeppezauer M, Rossolini GM, Amicosante G, Frère J-M, Galleni M (1997) Biochemistry 36:11534–11541CrossRefGoogle Scholar
  32. 32.
    Garau G, Bebrone C, Anne C, Galleni M, Frère J-M, Dideberg O (2005) J Mol Biol 345:785–795PubMedCrossRefGoogle Scholar
  33. 33.
    Spencer J, Read J, Sessions RB, Howell S, Blackburn GM, Gamblin SJ (2005) J Am Chem Soc 127:14439–14444PubMedCrossRefGoogle Scholar
  34. 34.
    Crawford PA, Yang K-W, Sharma N, Bennett B, Crowder MW (2005) Biochemistry 44:5168–5176PubMedCrossRefGoogle Scholar
  35. 35.
    Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J (1998) J Mol Biol 284:125–136PubMedCrossRefGoogle Scholar
  36. 36.
    García-Saéz1 I, Mercuri PS, Papamicael C, Kahn R, Frére J-M, Galleni M, Rossolini GM, Dideberg O (2003) J Mol Biol 325:651–660PubMedCrossRefGoogle Scholar
  37. 37.
    Mercuri PS, Bouillenne F, Boschi L, Lamotte-Brasseur J, Amicosante G, Devreese B, van Beeumen J, Frère J-M, Rossolini GM, Galleni M (2001) Antimicrob Agents Chemother 45:1254–1262PubMedCrossRefGoogle Scholar
  38. 38.
    Morán-Barrio J, González JM, Lisa MN, Costello AL, Peraro MD, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ (2007) J Biol Chem 282:18286–18293PubMedCrossRefGoogle Scholar
  39. 39.
    Koike T, Takamura M, Kimura E (1994) J Am Chem Soc 116:8443–8449CrossRefGoogle Scholar
  40. 40.
    Koike T, Kimura E (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, pp 178–188Google Scholar
  41. 41.
    Koike T, Kimura E (1991) J Am Chem Soc 113:8935–8941CrossRefGoogle Scholar
  42. 42.
    Hayashi T (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, pp 1631–1638Google Scholar
  43. 43.
    Gensmantel NP, Proctor P, Page MI (1980) J Chem Soc Perkin Trans 2 1725–1732Google Scholar
  44. 44.
    Montoya-Pelaez PJ, Brown RS (2002) Inorg Chem 41:309–316PubMedCrossRefGoogle Scholar
  45. 45.
    Gross F, Vahrenkamp H (2005) Inorg Chem 44:4433–4440PubMedCrossRefGoogle Scholar
  46. 46.
    Kaminskaia NV, Spingler B, Lippard SJ (2000) J Am Chem Soc 122:6411–6422CrossRefGoogle Scholar
  47. 47.
    Kaminskaia NV, He C, Lippard SJ (2000) Inorg Chem 39:3365–3373PubMedCrossRefGoogle Scholar
  48. 48.
    Bennett B, Holz RC (1997) J Am Chem Soc 119:1923–1933CrossRefGoogle Scholar
  49. 49.
    Kaminskaia NV, Spingler B, Lippard SJ (2001) J Am Chem Soc 123:6555–6563PubMedCrossRefGoogle Scholar
  50. 50.
    Wang Z, Fast W, Benkovic SJ (1998) J Am Chem Soc 120:10788–10789CrossRefGoogle Scholar
  51. 51.
    McMannus-Munoz S, Crowder MW (1999) Biochemistry 38:1547–1553CrossRefGoogle Scholar
  52. 52.
    Park H, Brothers EN, Merz KM Jr (2005) J Am Chem Soc 127:4232–4241PubMedCrossRefGoogle Scholar
  53. 53.
    Garrity JD, Bennett B, Crowder MW (2005) Biochemistry 44:1078–1087PubMedCrossRefGoogle Scholar
  54. 54.
    Bauer-Siebenlist B, Meyer F, Farkas E, Vidovic D, Dechert S (2005) Chem Eur J 11:4349–4360CrossRefGoogle Scholar
  55. 55.
    Meyer F, Pritzkow H (2005) Eur J Inorg Chem 2346–2351Google Scholar
  56. 56.
    Bauer-Siebenlist B, Dechert S, Meyer F (2005) Chem Eur J 11:5343–5352 and references thereinGoogle Scholar
  57. 57.
    Tamilselvi A, Nethaji M, Mugesh G (2006) Chem Eur J 12:7797–7806CrossRefGoogle Scholar
  58. 58.
    Sakiyama H, Mochizuki R, Sugawara A, Sakamoto M, Nishida Y, Yamasaki M (1999) J Chem Soc Dalton Trans 997–1000Google Scholar
  59. 59.
    Díaz N, Suárez D, Merz KM Jr (2001) J Am Chem Soc 123:9867–9879 and references thereinGoogle Scholar
  60. 60.
    Peraro MD, Vila AJ, Carloni P (2003) Inorg Chem 42:4245–4247CrossRefGoogle Scholar
  61. 61.
    Orellano EG, Girardini JE, Cricco JA, Ceccarelli EA, Vila AJ (1998) Biochemistry 37:10173–10180 and references thereinGoogle Scholar
  62. 62.
    Bounaga S, Laws AP, Galleni M, Page MI (1998) Biochem J 331:61–68Google Scholar
  63. 63.
    Rasia RM, Vila AJ (2002) Biochemistry 41:1853–1860PubMedCrossRefGoogle Scholar
  64. 64.
    Park H-S, Nam S-H, Lee JK, Yoon C, Mannervik B, Benkovic SJ, Kim H-S (2006) Science 311:535–538PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations