JBIC Journal of Biological Inorganic Chemistry

, Volume 13, Issue 7, pp 1157–1167 | Cite as

Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes

  • É. Lojou
  • X. Luo
  • M. Brugna
  • N. Candoni
  • S. Dementin
  • M. T. Giudici-Orticoni
Original Paper

Abstract

We report the modification of gold and graphite electrodes with commercially available carbon nanotubes for immobilization of Desulfovibrio fructosovorans [NiFe] hydrogenase, for hydrogen evolution or consumption. Multiwalled carbon nanotubes, single-walled carbon nanotubes (SWCNs), and amine-modified and carboxyl-functionalized SWCNs were used and compared throughout. Two separate methods were performed: covalent attachment of oriented hydrogenase by controlled architecture of carbon nanotubes at gold electrodes, and adsorption of hydrogenase at carbon-nanotube-coated pyrolytic graphite electrodes. In the case of self-assembled carbon nanotubes at gold electrodes, hydrogenase orientation based on electrostatic interaction with the electrode surface was found to control the electrocatalytic process for H2 oxidation. In the case of carbon nanotube coatings on pyrolytic graphite electrodes, catalysis was controlled more by the geometry of the nanotubes than by the orientation of the enzyme. Noticeably, shortened SWCNs were demonstrated to allow direct electron transfer and generate high and quite stable current densities for H2 oxidation via adsorbed hydrogenase, despite having many carboxylic surface functions that could yield unfavorable hydrogenase orientation for direct electron transfer. This result is attributable to the high degree of oxygenated surface functions in addition to the length of shortened SWCNs that yields highly divided materials.

Keywords

Voltammetry Hydrogenase Carbon nanotube Immobilization Catalysis 

Abbreviations

AFM

Atomic force microscopy

CV

Cyclic voltammetry

DCC

N,N′-dicyclohexylcarbodiimide

DET

Direct electron transfer

DMF

N,N′-Dimethylformamide

Gox

Glucose oxidase

HEPES

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

MPA

3-Mercaptopropionic acid

MV

Methylviologen

MWCN

Multiwalled carbon nanotube

PEI

Poly(ethyleneimine)

PG

Pyrolytic graphite

SAM

Self-assembled monolayer

SWCN

Single-walled carbon nanotube

SWCN-CO2H

Carboxylic acid functionalized single-walled carbon nanotube

SWCN-cut

Shortened single-walled carbon nanotube

TEM

Transmission electron microscopy

Supplementary material

775_2008_401_MOESM1_ESM.pdf (158 kb)
Supplemental information (PDF 157 kb)

References

  1. 1.
    De Lacey AL, Fernandez VM, Rousset M, Cammack R (2007) Chem Rev 107:4304–4330PubMedCrossRefGoogle Scholar
  2. 2.
    Vignais PM, Billoud B (2007) Chem Rev 107:4206–4272PubMedCrossRefGoogle Scholar
  3. 3.
    Karyakin AA, Morozov SV, Voronin OG, Zorin NA, Karyakina EE, Fateyev VN, Cosnier S (2007) Angew Chem Int Ed 46:1–4CrossRefGoogle Scholar
  4. 4.
    Vincent KA, Cracknell JA, Parkin A, Armstrong FA (2005) Dalton Trans 3397–3403Google Scholar
  5. 5.
    Ma K, Adams MWW (2001) Methods Enzymol 331:208–216PubMedCrossRefGoogle Scholar
  6. 6.
    Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT (2003) Extremophiles 7:145–157PubMedGoogle Scholar
  7. 7.
    Butt JN, Filipiak M, Hagen WR (1997) Eur J Biochem 245:116–122PubMedCrossRefGoogle Scholar
  8. 8.
    Pershad HR, Duff JLC, Heering HA, Duin EC, Albracht SPJ, Armstrond FA (1999) Biochemistry 38:8992–8999PubMedCrossRefGoogle Scholar
  9. 9.
    Guiral-Brugna M, Giudici-Orticoni MT, Bruschi M, Bianco P (2001) J Electroanal Chem 510:136–143CrossRefGoogle Scholar
  10. 10.
    Rüdiger O, Abad JM, Hatchikian EC, Fernandez VM, de Lacey AL (2005) J Am Chem Soc 127:16008–16009PubMedCrossRefGoogle Scholar
  11. 11.
    Lojou E, Giudici-Orticoni MT, Bianco P (2005) J Electroanal Chem 579:199–213CrossRefGoogle Scholar
  12. 12.
    Morozov SV, Karyakina EE, Zorin NA, Vafolomeyev SD, Cosnier S, Karyakin AA (2002) Bioelectrochemistry 55:169–171PubMedCrossRefGoogle Scholar
  13. 13.
    Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107:4366–4413PubMedCrossRefGoogle Scholar
  14. 14.
    Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chem Eur J 9:3732–3739CrossRefGoogle Scholar
  15. 15.
    Gooding JJ, Shapter JG (2005) In: Vo-Dinh T (ed) Protein nanotechnology: protocols, instrumentation, and applications (methods in molecular biology). Humana Press, New York, pp 225–242Google Scholar
  16. 16.
    Gooding JJ (2005) Electrochim Acta 50:3049–3060CrossRefGoogle Scholar
  17. 17.
    Wang J (2005) Electroanalysis 17:7–14CrossRefGoogle Scholar
  18. 18.
    Li J, Tee Ng H, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Nano Lett 3:597–602CrossRefGoogle Scholar
  19. 19.
    Yan Y, Zheng W, Zhang M, Wang L, Su L, Mao L (2005) Langmuir 21:6560–6566PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao L, Liu H, Hu N (2006) Anal Bioanal Chem 384:414–422PubMedCrossRefGoogle Scholar
  21. 21.
    Chen L, Lu G (2007) Sens Actuators B Chem 121:423–429CrossRefGoogle Scholar
  22. 22.
    Patolsky F, Weizmann Y, Willner I (2004) Angew Chem Int Ed 43:2113–2117CrossRefGoogle Scholar
  23. 23.
    Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Electroanalysis 17:38–46CrossRefGoogle Scholar
  24. 24.
    Wang J, Sun X, Cai X, Lei Y, Song L, Xie S (2007) Electrochem Solid State Lett 10:J58–J60CrossRefGoogle Scholar
  25. 25.
    Chen H, Dong S (2007) Biosens Bioelectron 22:1811–1815PubMedCrossRefGoogle Scholar
  26. 26.
    Weigel MC, Tritscher E, Lisdat F (2007) Electrochem Commun 9:689–693CrossRefGoogle Scholar
  27. 27.
    Liu AR, Wakayama T, Nakamura C, Miyake J, Zorin NA, Qian DJ (2007) Electrochim Acta 52:3222–3228CrossRefGoogle Scholar
  28. 28.
    Alonso-Lomillo MA, Rüdiger O, Maroto-Valiente A, Velez M, Rodriguez-Ramos I, Munos FJ, Fernandez VM, De Lacey AL (2007) Nano Lett 7:1603–1608PubMedCrossRefGoogle Scholar
  29. 29.
    Dementin S, Belle V, Bertrand P, Guigliarelli B, Adryanczyk-Perrier G, De Lacey AL, Fernandez VM, Rousset M, Léger C (2006) J Am Chem Soc 128:5209–5218PubMedCrossRefGoogle Scholar
  30. 30.
    LeGall J, Moura G, Dragoni N (1965) Biochim Biophys Acta 99:385–387PubMedGoogle Scholar
  31. 31.
    Volbeda A, Montet Y, Vernède X, Hatchikian EC, Fontecilla-Camps J (2002) Int J Hydrogen Energy 27:1449–1461CrossRefGoogle Scholar
  32. 32.
    Barisci JN, Wallace GG, Baughman RH (2000) J Electrochem Soc 488:92–98Google Scholar
  33. 33.
    Gooding JJ, Chou A, Liu J, Losic D, Shapter JG, Hibbert DB (2007) Electrochem Commun 9:1677–1683CrossRefGoogle Scholar
  34. 34.
    Cline KK, Mcdermott MT, McCreery RL (1994) J Phys Chem 98:5314–5319CrossRefGoogle Scholar
  35. 35.
    Lojou E, Bianco P (2006) Bioelectrochemistry 69:237–247PubMedCrossRefGoogle Scholar
  36. 36.
    Nicholson RS, Shain I (1964) Anal Chem 36:706–723CrossRefGoogle Scholar
  37. 37.
    Draoui K, Bianco P, Haladjian J, Guerlesquin F, Bruschi M (1991) J Electroanal Chem 313:201–214CrossRefGoogle Scholar
  38. 38.
    Armstrong FA, Cox PA, Hill HAO, Lowe VJ, Oliver BN (1987) J Electroanal Chem Interface Electrochem 217:331–336CrossRefGoogle Scholar
  39. 39.
    Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green MLH (2002) J Am Chem Soc 124:13664–13665CrossRefGoogle Scholar
  40. 40.
    Qian DJ, Nakamura C, Zorin N, Miyake J (2002) Colloids Surf A Physicochem Eng Asp 198-200:663–669CrossRefGoogle Scholar
  41. 41.
    Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187–214CrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • É. Lojou
    • 1
  • X. Luo
    • 1
  • M. Brugna
    • 1
  • N. Candoni
    • 2
  • S. Dementin
    • 1
  • M. T. Giudici-Orticoni
    • 1
  1. 1.Unité de Bioénergétique et Ingénierie des ProtéinesInstitut de Biologie Structurale et Microbiologie, CNRSMarseille Cedex 20France
  2. 2.Centre Interdisciplinaire de Nanoscience de Marseille13288MarseilleFrance

Personalised recommendations