Specific binding of divalent metal ions to tetracycline and to the Tet repressor/tetracycline complex

  • Gottfried J. Palm
  • Thomas Lederer
  • Peter Orth
  • Wolfram Saenger
  • Masayuki Takahashi
  • Wolfgang Hillen
  • Winfried Hinrichs
Original Paper


Tetracyclines coordinate metal(II) ions under physiological conditions forming chelate complexes with their ketoenolate moiety at rings B and C. These metal(II) complexes are the biologically relevant molecules conferring the antibiotic character of the drug by inhibiting ribosomal protein biosynthesis in prokaryotes. The Tet repressor, TetR, is the molecular switch for tetracycline resistance determinants in gram-negative bacteria. TetR controls transcription of a gene encoding the integral membrane protein TetA, which mediates active efflux of a tetracycline–metal(II) cation, [MeTc]+, by equimolar antiport with a proton. We evaluated distinct characteristics of the metal binding by crystal structure determination of TetR/[MeTc]+ complexes and of association equilibrium constants of [MeTc]+ and TetR/[MeTc]+ complexes. Various divalent metal ions bind to the same octahedral coordination site, defined by a histidine side chain of TetR, the tetracycline, and three water molecules. Whereas association constants for [MeTc]+ vary within 3 orders of magnitude, association of the [MeTc]+ cation to TetR is very similar for all measured divalent metals. Taking intracellular cation concentrations into account, it is evident that no other metal ion can compete with Mg2+ for TetR/[MeTc]+ complex formation.


Binding affinity X-ray crystallography Structure–function relationship Metalloregulation Tetracycline 


  1. 1.
    Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W (2000) Nat Struct Biol 7:215–219PubMedCrossRefGoogle Scholar
  2. 2.
    Müller G, Hecht B, Helbl V, Hinrichs W, Saenger W, Hillen W (1995) Nat Struct Biol 2:693–703PubMedCrossRefGoogle Scholar
  3. 3.
    Lederer T, Takahashi M, Hillen W (1995) Anal Biochem 232:190–196PubMedCrossRefGoogle Scholar
  4. 4.
    Hillen W, Berens C (1994) Annu Rev Microbiol 48:345–369PubMedCrossRefGoogle Scholar
  5. 5.
    Yamaguchi A, Udagawa T, Sawai T (1990) J Biol Chem 265:4809–4813PubMedGoogle Scholar
  6. 6.
    Berens C, Hillen W (2003) Eur J Biochem 270:3109–3121PubMedCrossRefGoogle Scholar
  7. 7.
    Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W (1994) Science 264:418–420PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi M, Altschmied L, Hillen W (1986) J Mol Biol 187:341–348PubMedCrossRefGoogle Scholar
  9. 9.
    Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W (1995) J Mol Biol 247:260–280PubMedCrossRefGoogle Scholar
  10. 10.
    Orth P, Cordes F, Schnappinger D, Hillen W, Saenger W, Hinrichs W (1998) J Mol Biol 279:439–447PubMedCrossRefGoogle Scholar
  11. 11.
    Orth P, Saenger W, Hinrichs W (1999) Biochemistry 38:191–198PubMedCrossRefGoogle Scholar
  12. 12.
    Heffron SE, Mui S, Aorora A, Abel K, Bergmann E, Jurnak F (2006) Acta Crystallogr D Biol Crystallogr 62:1392–1400PubMedCrossRefGoogle Scholar
  13. 13.
    Pioletti M, Schlünzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F (2001) EMBO J 20:1829–1839PubMedCrossRefGoogle Scholar
  14. 14.
    Krafft C, Hinrichs W, Orth P, Saenger W, Welfle H (1998) Biophys J 74:63–71PubMedGoogle Scholar
  15. 15.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–325CrossRefGoogle Scholar
  16. 16.
    Collaborative Computational ProjectNumber 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  17. 17.
    Jones TA, Zou J, Cowan SW, Kieldgaard M (1991) Acta Crystallogr A 47:110–118PubMedCrossRefGoogle Scholar
  18. 18.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–755PubMedCrossRefGoogle Scholar
  19. 19.
    Pflugrath JW (1999) Acta Crystallogr D Biol Crystallogr 55:1718–1725PubMedCrossRefGoogle Scholar
  20. 20.
    Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen GH (1997) J Appl Crystallogr 30:1160–1161CrossRefGoogle Scholar
  22. 22.
    Takahashi M, Degenkolb J, Hillen W (1991) Anal Biochem 199:197–202PubMedCrossRefGoogle Scholar
  23. 23.
    Schneider S (2001) In: Nelson M (ed) Tetracyclines in biology, chemistry and medicine. Birkhäuser, Basel, pp 65–106Google Scholar
  24. 24.
    Stezowski JJ (1976) J Am Chem Soc 98:6012–6018PubMedCrossRefGoogle Scholar
  25. 25.
    Aleksandrov A, Proft J, Hinrichs W, Simonson T (2007) Chembiochem 8(6):675–685PubMedCrossRefGoogle Scholar
  26. 26.
    Aleksandrov A, Simonson T (2006) J Comp Chem 27:1517–1533PubMedCrossRefGoogle Scholar
  27. 27.
    Stephens C, Murai K, Brunings K, Woodward R (1956) J Am Chem Soc 78:4155–4158CrossRefGoogle Scholar
  28. 28.
    Schnarr M, Matthies M, Lohmann W (1979) Z Naturforsch C 34:1156–1161Google Scholar
  29. 29.
    Kohn KW (1961) Nature 191:1156–1158PubMedCrossRefGoogle Scholar
  30. 30.
    Ettner N, Metzger JW, Lederer T, Hulmes JD, Kisker C, Hinrichs W, Ellestad GA, Hillen W (1995) Biochemistry 22:22–31CrossRefGoogle Scholar
  31. 31.
    Jogun KH, Stezowski JJ (1976) J Am Chem Soc 98:6018–6026PubMedCrossRefGoogle Scholar
  32. 32.
    Baker WA Jr, Brown PA (1966) J Am Chem Soc 88:1314–1317PubMedCrossRefGoogle Scholar
  33. 33.
    Berthon G, Brion M, Lambs L (1983) J Inorg Biochem 19:1–18PubMedCrossRefGoogle Scholar
  34. 34.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. Harper Collins, New YorkGoogle Scholar
  35. 35.
    Coibion C, Laszlo P (1979) Biochem Pharmacol 28:1367–1372PubMedCrossRefGoogle Scholar
  36. 36.
    Cohlan SQ, Bevelander G, Tiamsic T (1963) Am J Dis Child 20:275–290Google Scholar
  37. 37.
    Brion M, Lambs L, Berthon G (1985) Inflamm Res 17:229–242Google Scholar
  38. 38.
    Lubben M, Meetsma A, Wilkinson EC, Fering B, Que L Jr (1995) Angew Chem Int Ed Engl 34:1512–1514CrossRefGoogle Scholar
  39. 39.
    Finney LA, O’Halloran TV (2003) Science 300:931–936PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • Gottfried J. Palm
    • 1
  • Thomas Lederer
    • 2
  • Peter Orth
    • 3
    • 5
  • Wolfram Saenger
    • 3
  • Masayuki Takahashi
    • 4
  • Wolfgang Hillen
    • 2
  • Winfried Hinrichs
    • 1
  1. 1.Institut für BiochemieUniversität GreifswaldGreifswaldGermany
  2. 2.Institut für MikrobiologieUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Institut für Chemie und Biochemie/KristallographieFreie Universität BerlinBerlinGermany
  4. 4.UMR 6204 Centre National de la Recherche Scientifique and Universite de NantesNantes Cedex 3France
  5. 5.Schering-PloughKenilworthUSA

Personalised recommendations