Long-range charge transport through double-stranded DNA mediated by manganese or iron porphyrins

  • Magdalena Makarska
  • Geneviève PratvielEmail author
Original Paper


Guanine oxidation by electron transfer results in the formation of a guanine radical cation, which is at the origin of long-range charge transport through double-stranded DNA. It is possible to observe guanine lesions at a long distance from the oxidative reagent covalently bound to DNA owing to the migration of the positive hole in the DNA π-stacks. This phenomenon of long-range hole transport is classically studied in the literature with photosensitizers used as one-electron oxidants. It is shown in the present work that the process of long-range charge transport and the concomitant formation of guanine lesions at a long distance can be observed also in the case of two-electron oxidants. This is the signature of the formation of a transient guanine radical cation in the course of the two-electron abstraction process and consequently evidence of the separated one plus one electron abstraction steps. Long-range charge transport is likely to be a universal mechanism for any two-electron oxidant acting by electron abstraction provided that the second electron abstraction is slower than hole transfer.


Manganese Iron Porphyrin DNA Guanine oxidation 



A NATO Science Fellowship to M.M. is gratefully acknowledged. The authors thank Bernard Meunier for fruitful discussion.


  1. 1.
    Nunez ME, Hall DB, Barton JK (1999) Chem Biol 6:85–97PubMedCrossRefGoogle Scholar
  2. 2.
    Schuster GB (2000) Acc Chem Res 33:253–260PubMedCrossRefGoogle Scholar
  3. 3.
    Giese B (2002) Annu Rev Biochem 71:51–70PubMedCrossRefGoogle Scholar
  4. 4.
    Lewis FD, Letsinger RL, Wasielewski MR (2001) Acc Chem Res 34:159–170PubMedCrossRefGoogle Scholar
  5. 5.
    Nakatani K, Dohno C, Saito I (1999) J Am Chem Soc 121:10854–10855CrossRefGoogle Scholar
  6. 6.
    Kawai K, Takada T, Tojo S, Ichinose N, Majima T (2001) J Am Chem Soc 123:12688–12689PubMedCrossRefGoogle Scholar
  7. 7.
    Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617–618CrossRefGoogle Scholar
  8. 8.
    Kasai H, Yamaizumi Z, Berger M, Cadet J (1992) J Am Chem Soc 114:9692–9694CrossRefGoogle Scholar
  9. 9.
    Steenken S (1989) Chem Rev 89:503–520CrossRefGoogle Scholar
  10. 10.
    Misiaszek R, Cream C, Joffe A, Geacintov NE, Shafirovich V (2004) J Biol Chem 279:32106–32115PubMedCrossRefGoogle Scholar
  11. 11.
    Yun BH, Lee YA, Kim SK, Kuzmin V, Kolbanovskiy A, Dedon PC, Geacintov NE, Shafirovich V (2007) J Am Chem Soc 129:9321–9332PubMedCrossRefGoogle Scholar
  12. 12.
    Holmberg RC, Thorp HH (2004) Inorg Chem 43:5080–5085PubMedCrossRefGoogle Scholar
  13. 13.
    Pratviel G, Bernadou J, Meunier B (1998) Adv Inorg Chem 45:251–312CrossRefGoogle Scholar
  14. 14.
    Pitié M, Boldron C, Pratviel G (2006) Adv Inorg Chem 58:77–130CrossRefGoogle Scholar
  15. 15.
    Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622PubMedCrossRefGoogle Scholar
  16. 16.
    Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980PubMedCrossRefGoogle Scholar
  17. 17.
    Meunier B, Robert A, Pratviel G, Bernadou J (2000) In: Kadish KM, Smith K, Guilard R (eds) Handbook of porphyrins and related macrocycles, vol 4. Academic Press, San Diego, pp 119–187Google Scholar
  18. 18.
    Groves TJ (2006) J Inorg Biochem 100:434–447PubMedCrossRefGoogle Scholar
  19. 19.
    Pitié M, Bernadou J, Meunier B (1995) J Am Chem Soc 117:2935–2936CrossRefGoogle Scholar
  20. 20.
    Pitié M, Pratviel G, Bernadou J, Meunier B (1992) Proc Natl Acad Sci USA 89:3967–3971PubMedCrossRefGoogle Scholar
  21. 21.
    Vialas C, Pratviel G, Claparols C, Meunier B (1998) J Am Chem Soc 120:11548–11553CrossRefGoogle Scholar
  22. 22.
    Vialas C, Claparols C, Pratviel G, Meunier B (2000) J Am Chem Soc 122:2157–2167CrossRefGoogle Scholar
  23. 23.
    Pratviel G, Meunier B (2006) Chem Eur J 12:6018–6030CrossRefGoogle Scholar
  24. 24.
    Mourgues S, Kupan A, Pratviel G, Meunier B (2005) Chembiochem 6:2326–2335PubMedCrossRefGoogle Scholar
  25. 25.
    Arnaud P, Zakrzewska K, Meunier B (2003) J Comput Chem 24:797–805PubMedCrossRefGoogle Scholar
  26. 26.
    Mestre B, Jacobs A, Pratviel G, Meunier B (1996) Biochemistry 35:9140–9149PubMedCrossRefGoogle Scholar
  27. 27.
    Mestre B, Pitié M, Loup C, Claparols C, Pratviel G, Meunier B (1997) Nucleic Acids Res 25:1022–1027PubMedCrossRefGoogle Scholar
  28. 28.
    Mestre B, Nascimben S, Pratviel G, Meunier B (1998) C R Acad Sci II 1:725–736Google Scholar
  29. 29.
    Dubey I, Pratviel G, Meunier B (2000) J Chem Soc Perkin Trans 1:3088–3095CrossRefGoogle Scholar
  30. 30.
    Bigey P, Pratviel G, Meunier B (1995) J Chem Soc Chem Commun 181–182Google Scholar
  31. 31.
    Fasman GD (1975) Handbook of biochemistry and molecular biology—nucleic acids. 3rd edn. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Casas C, Saint-Jalmes B, Loup C, Lacey CJ, Meunier B (1993) J Org Chem 58:2913–2917CrossRefGoogle Scholar
  33. 33.
    Bigey P, Frau S, Loup C, Claparols C, Bernadou J, Meunier B (1996) Bull Soc Chim 133:679–689Google Scholar
  34. 34.
    Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560PubMedCrossRefGoogle Scholar
  35. 35.
    Kobayashi K, Tagawa S (2003) J Am Chem Soc 125:10213–10218PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis FD, Liu X, Liu J, Miller SE, Hayes RT, Wasielewski MR (2000) Nature 406:51–53PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.Laboratoire de Chimie de Coordination du CNRSToulouse Cedex 4France

Personalised recommendations