Mapping iron binding sites on human frataxin: implications for cluster assembly on the ISU Fe–S cluster scaffold protein

  • Jia Huang
  • Eric Dizin
  • J. A. CowanEmail author
Original Paper


Frataxin is an iron binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron–sulfur cluster and heme biosynthesis. There is a high degree of structural homology for frataxin proteins from diverse sources, and all possess an anionic surface defined by acidic residues. In the human protein these residues principally lie on a surface defined by the α1 helix and β1 sheet and the impact of multiple substitutions of these carboxylate residues on iron binding is described. Full-length human frataxin has previously been shown to undergo self-cleavage to produce a truncated form both in vitro and in vivo. This truncated protein has been shown to bind approximately seven iron centers that are presumably associated with the acidic patch. Relative to this native protein, the stoichiometry decreases according to the number and sites of mutations. Nevertheless, the iron-dependent binding affinity of each frataxin derivative to the iron–sulfur cluster scaffold protein ISU is found to be similar to that of native frataxin, as defined by isothermal titration calorimetry experiments, requiring only one iron center to promote nanomolar binding. While frataxins from various cell types appear to bind differing numbers of iron centers, the physiologically relevant number of bound irons appears to be small, with significantly higher binding affinity following complex formation with partner proteins (micromolar compared with nanomolar binding). By contrast, in reconstitution assays for frataxin-promoted [2Fe–2S]2+ cluster assembly on ISU, one derivative does display a modestly lower reconstitution rate. The overall consensus from these data is to consider a pool of potential sites that can stably bind an iron center when bridged to a variety of physiological targets.


Frataxin Iron binding Fe–S cluster biosynthesis ISU 



We thank Grazia Isaya for the gift of vectors that facilitated preparation of the frataxin derivatives used in these studies. This work was supported by a grant the National Science Foundation, CHE-0111161.


  1. 1.
    Warren ST (1996) Science 271:1374–1375PubMedCrossRefGoogle Scholar
  2. 2.
    Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) N Engl J Med 335:1169–1175PubMedCrossRefGoogle Scholar
  3. 3.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Science 271:1423–1427PubMedCrossRefGoogle Scholar
  4. 4.
    Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Nat Genet 17:215–217PubMedCrossRefGoogle Scholar
  5. 5.
    Ristow M, Pfister MF, Yee AJ, Schubert M, Michael L, Zhang CY, Ueki K, Michael MD, Lowell BB, Kahn CR (2000) Proc Natl Acad Sci USA 97:12239–12243PubMedCrossRefGoogle Scholar
  6. 6.
    Foury F (1999) FEBS Lett 456:281–284PubMedCrossRefGoogle Scholar
  7. 7.
    Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Nat Genet 27:181–186PubMedCrossRefGoogle Scholar
  8. 8.
    Cavadini P, O’Neill HA, Benada O, Isaya G (2002) Hum Mol Genet 11:217–227PubMedCrossRefGoogle Scholar
  9. 9.
    Yoon T, Cowan JA (2003) J Am Chem Soc 125:6078–6084PubMedCrossRefGoogle Scholar
  10. 10.
    Gerber J, Muhlenhoff U, Lill R (2003) EMBO Rep 4:906–911PubMedCrossRefGoogle Scholar
  11. 11.
    Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002) Hum Mol Genet 11:2025–2036PubMedCrossRefGoogle Scholar
  12. 12.
    Muhlenhoff U, Richhardt N, Gerber J, Lill R (2002) J Biol Chem 277:29810–29816PubMedCrossRefGoogle Scholar
  13. 13.
    Bencze KZ, Yoon T, Millán-Pacheco C, Bradley PB, Pastor N, Cowan JA, Stemmler TL (2007) Chem Commun 1798–1800Google Scholar
  14. 14.
    Yoon T, Cowan JA (2004) J Biol Chem 279:25943–25946PubMedCrossRefGoogle Scholar
  15. 15.
    Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Science 305:242–245PubMedCrossRefGoogle Scholar
  16. 16.
    Condò I, Ventura N, Malisan F, Tomassini B, Testi R (2007) J Biol Chem 281:16750–16756CrossRefGoogle Scholar
  17. 17.
    Ventura N, Rea SL, Handerson ST, Condo I, Testi R, Johnson TE (2006) FASEB J 20:1029–1030PubMedCrossRefGoogle Scholar
  18. 18.
    Acquaviva F, De Biase I, Nezi L, Ruggiero G, Tatangelo F, Pisano C, Monticelli A, Garbi C, Acquaviva AM, Cocozza S (2005) J Cell Sci 118:3917–3924PubMedCrossRefGoogle Scholar
  19. 19.
    Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, Shoelson SE (2000) J Biol Chem 275:30753–30756PubMedCrossRefGoogle Scholar
  20. 20.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041PubMedCrossRefGoogle Scholar
  21. 21.
    He Y, Alam SL, Proteasa SV, Zhang Y, Lesuisse E, Dancis A, Stemmler TL (2004) Biochemistry 43:16254–16262PubMedCrossRefGoogle Scholar
  22. 22.
    Bencze KZ, Kondapalli KC, Cook JD, McMahon S, Millan-Pacheco C, Pastor N, Stemmler TL (2006) Crit Rev Biochem Mol Biol 41:269–291PubMedCrossRefGoogle Scholar
  23. 23.
    Cook JD, Bencze KZ, Jankovic AD, Crater AK, Busch CN, Bradley PB, Stemmler AJ, Spaller MR, Stemmler TL (2006) Biochemistry 45:7767–7777PubMedCrossRefGoogle Scholar
  24. 24.
    Yoon T, Dizin E, Cowan JA (2007) J Biol Inorg Chem 12:535–542PubMedCrossRefGoogle Scholar
  25. 25.
    Condo I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R (2007) Hum Mol Genet 16:1534–1540PubMedCrossRefGoogle Scholar
  26. 26.
    Liu J, Oganesyan N, Shin DH, Jancarik J, Yokota H, Kim R, Kim SH (2005) Proteins 59:875–881PubMedCrossRefGoogle Scholar
  27. 27.
    Wu S-P, Wu G, Surerus KK, Cowan JA (2002) Biochemistry 41:8876–8885PubMedCrossRefGoogle Scholar
  28. 28.
    Foster MW, Mansy SS, Hwang J, Penner-Hahn JE, Surerus KK, Cowan JA (2000) J Am Chem Soc 122:6805–6806CrossRefGoogle Scholar
  29. 29.
    Ding H, Clark RJ (2004) Biochem J 379:433–440PubMedCrossRefGoogle Scholar
  30. 30.
    Ishikawa T, Mizunoe Y, Kawabata S-I, Takade A, Harada M, Wai SN, Yoshida S-I (2003) J Bacteriol 185:1010–1017PubMedCrossRefGoogle Scholar
  31. 31.
    Foury F, Pastore A, Trincal M (2007) EMBO Rep 8:194–199PubMedCrossRefGoogle Scholar
  32. 32.
    Lesuisse E, Santos R, Matzanke BF, Knight SA, Camadro JM, Dancis A (2003) Hum Mol Genet 12:879–889PubMedCrossRefGoogle Scholar
  33. 33.
    Aloria K, Schilke B, Andrew A, Craig EA (2004) EMBO Rep 5:1096–1101PubMedCrossRefGoogle Scholar
  34. 34.
    Gakh O, Park S, Liu G, Macomber L, Imlay JA, Ferreira GC, Isaya G (2006) Hum Mol Genet 15:467–479PubMedCrossRefGoogle Scholar
  35. 35.
    Cavadini P, Gellera C, Patel PI, Isaya G (2000) Hum Mol Genet 9:2523–2530PubMedCrossRefGoogle Scholar
  36. 36.
    Kaiser JT, Clausen T, Bourenkow GP, Bartunik H-D, Steinbacher S, Huber R (2000) J Mol Biol 297:451–464PubMedCrossRefGoogle Scholar
  37. 37.
    Liu Y, Cowan JA (2007) Chem Commun 3192–3194Google Scholar
  38. 38.
    Cho SJ, Lee MG, Yang JK, Lee JY, Song HK, Suh SW (2000) Proc Natl Acad Sci USA 97:8932–8937PubMedCrossRefGoogle Scholar
  39. 39.
    Lee MG, Cho SJ, Yang JK, Song HK, Suh SW (2000) Acta Crystallogr D Biol Crystallogr 56:920–921PubMedCrossRefGoogle Scholar
  40. 40.
    Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, Pastore A (2000) Structure 8:695–707PubMedCrossRefGoogle Scholar
  41. 41.
    Nair M, Adinolfi S, Pastore C, Kelly G, Temussi P, Pastore A (2004) Structure 12:2037–2048PubMedCrossRefGoogle Scholar
  42. 42.
    Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M (2006) J Biol Chem 281:16256–16263PubMedCrossRefGoogle Scholar
  43. 43.
    Bou-Abdallah F, Adinolfi S, Pastore A, Laue TM, Chasteen ND (2004) J Mol Biol 341:605–615PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.Evans Laboratory of ChemistryOhio State UniversityColumbusUSA

Personalised recommendations