Structural basis for VO2+-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe–protein identified by ENDOR spectroscopy

  • Jan Petersen
  • Claire J. Mitchell
  • Karl Fisher
  • David J. Lowe
Original Paper


The nitrogenase Fe–protein is the specific ATP-activated electron donor to the active site-containing nitrogenase MoFe-protein. It has been previously demonstrated that different VO2+–nucleotide coordination environments exist for the Fe–protein that depend on pH and are distinguishable by EPR spectroscopy. After having studied the nitrogenase 31P and 23Na superhyperfine structure for this system by electron nuclear double resonance (ENDOR) spectroscopy (Petersen et al. 2008 in J Biol Inorg Chem. doi:10.1007/s00775-008-0360-0), we here report on the 1H-interactions with the nucleotide-bound metal center after substitution of the natural diamagnetic metal Mg2+ with paramagnetic oxo-vanadium(IV). ENDOR spectra show a number of resonances arising from interactions of the VO2+ ion with protons. In the presence of reduced Fe–protein and VO2+ADP, at least three sets of nonexchangeable protons are detected. At low pH the superhyperfine couplings of most of these are consistent with proton interactions originating from the nucleotide. There is no indication of 1H-resonances that exchange in D2O at neutral pH and could be assigned to inner-sphere hydroxyl coordination. Exchangeable hydroxyl protons in the inner coordination sphere with reduced Fe–protein are only found in the low pH form; based on their hyperfine tensor components these have been assigned to an axially coordinated hydroxyl water molecule. The pH-dependent alterations of the proton couplings that exchange in D2O suggest that they are partially caused by a rearrangement in the local hydroxyl coordination environment of the metal center. These rearrangements especially affect the apical metal position, where an axially coordinated water present at low pH is absent at neutral pH. Oxidation of the Fe–protein induced substantial changes in the electron–nucleus interactions. This indicates that the oxidation state of the iron–sulfur cluster has an important effect on the metal coordination environment at the nucleotide binding site of the Fe–protein. The distinct VO2+–nucleotide coordination structures with ADP and ATP and the redox state of the [4Fe–4S] cluster imply that VO2+ has a critical influence on the switch regions of the regulatory protein, and, taken together, this provides a plausible explanation for the inhibitory action of VO2+.


Metalloenzymes Nitrogenase Fe–protein Nucleotides EPR ENDOR 



Adenosine (guanosine) 5′-diphosphate


Adenosine (guanosine) 5′-triphosphate

Av2, Cp2 and Kp2

Nitrogenase iron–proteins from Azotobacter vinelandii, Clostridium pasteurianum and Klebsiella pneumoniae, respectively


Electron nuclear double resonance


Electron paramagnetic resonance


Hyperfine (coupling)





Supplementary material


  1. 1.
    Burgess BK, Lowe DJ (1996) Chem Rev 96:2983–3011PubMedCrossRefGoogle Scholar
  2. 2.
    Howard JB, Rees DC (1996) Chem Rev 96:2965–2982PubMedCrossRefGoogle Scholar
  3. 3.
    Robinson AC, Dean DR, Burgess BK (1987) J Biol Chem 262:14327–14332PubMedGoogle Scholar
  4. 4.
    Robinson AC, Chun TW, Li J-G, Burgess BK (1987) J Biol Chem 264:10088–10095Google Scholar
  5. 5.
    Rees DC, Howard JB (1999) J Mol Biol 293:343–350PubMedCrossRefGoogle Scholar
  6. 6.
    Jang SB, Seefeldt LC, Peters JW (2000) Biochemistry 39:14745–14752PubMedCrossRefGoogle Scholar
  7. 7.
    Sen S, Igarashi R, Smith A, Johnson MK, Seefeldt LC, Peters JW (2004) Biochemistry 43:1787–1797PubMedCrossRefGoogle Scholar
  8. 8.
    Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (1992) Science 257:1653–1659PubMedCrossRefGoogle Scholar
  9. 9.
    Sen S, Krishnakumar A, McClead J, Johnson MK, Seefeldt MC, Szilagyi RK, Peters JW (2006) J Inorg Biochem 100:1041–1052PubMedCrossRefGoogle Scholar
  10. 10.
    Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Nature 387:370–376PubMedCrossRefGoogle Scholar
  11. 11.
    Chiu H-J, Peters JW, Lanzilotta WN, Ryle MJ, Seefeldt LC, Howard JB, Rees DC (2001) Biochemistry 40:641–650PubMedCrossRefGoogle Scholar
  12. 12.
    Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB, Rees DC (2005) Science 309:1377–1380PubMedCrossRefGoogle Scholar
  13. 13.
    Petersen J, Fisher K, Mitchell CJ, Lowe DJ (2002) Biochemistry 41:13253–13263PubMedCrossRefGoogle Scholar
  14. 14.
    Schlessman JL, Woo D, Joshua-Tor L, Howard JB, Rees DC (1998) J Mol Biol 280:669–685PubMedCrossRefGoogle Scholar
  15. 15.
    Chasteen ND (1981) Biol Magn Reson 3:53–119Google Scholar
  16. 16.
    Atherton NM, Shackleton JF (1980) J Mol Phys 39:1471–1485CrossRefGoogle Scholar
  17. 17.
    Kirste B, van Willigen H (1982) J Phys Chem 86:2743–2749CrossRefGoogle Scholar
  18. 18.
    Murphy DM, Fallis IA, Farley RD, Tucker RJ, Avery KL, Willock DJ (2002) Phys Chem Chem Phys 4:4937–4943CrossRefGoogle Scholar
  19. 19.
    Mustafi D, Makinen MW (2005) Inorg Chem 44:5580–5590PubMedCrossRefGoogle Scholar
  20. 20.
    van Willigen H, Chandrashekar TK (1983) J Am Chem Soc 105:4232–4235CrossRefGoogle Scholar
  21. 21.
    Attanasio D (1986) J Phys Chem 90:4952–4957CrossRefGoogle Scholar
  22. 22.
    Mustafi D, Telser J, Makinen MW (1992) J Am Chem Soc 114:6219–6226CrossRefGoogle Scholar
  23. 23.
    Jiang FS, Makinen MW (1995) Inorg Chem 34:1736–1744CrossRefGoogle Scholar
  24. 24.
    Hanna PM, Chasteen ND, Rottman GA, Aisen P (1991) Biochemistry 30:9210–9216PubMedCrossRefGoogle Scholar
  25. 25.
    Bogumil R, Hüttermann J, Kappl R, Stabler R, Sudfeldt C, Witzel H (1991) Eur J Biochem 196:305–312PubMedCrossRefGoogle Scholar
  26. 26.
    Mustafi D, Nakagawa Y (1996) Biochemistry 35:14703–14709PubMedCrossRefGoogle Scholar
  27. 27.
    Houseman ALP, LoBrutto R, Frasch WD (1994) Biochemistry 33:10000–10006PubMedCrossRefGoogle Scholar
  28. 28.
    Petersen J, Hawkes TR, Lowe DJ (1997) J Biol Inorg Chem 2:308–319CrossRefGoogle Scholar
  29. 29.
    Petersen J, Fisher K, Lowe DJ (2008) J Biol Inorg Chem. doi:10.1007/s00775-008-0360-0
  30. 30.
    Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) EMBO J 1:945–981PubMedGoogle Scholar
  31. 31.
    Seefeldt LC, Dean DR (1997) Acc Chem Res 30:260–266CrossRefGoogle Scholar
  32. 32.
    Robson RL (1984) FEBS Lett 173:394–398PubMedCrossRefGoogle Scholar
  33. 33.
    Kim J, Rees DC (1994) Biochemistry 33:389–397PubMedCrossRefGoogle Scholar
  34. 34.
    Sprang SR (1997) Annu Rev Biochem 66:639–678PubMedCrossRefGoogle Scholar
  35. 35.
    Story RM, Steitz TA (1992) Nature 355:374–376PubMedCrossRefGoogle Scholar
  36. 36.
    Xing X, Bell CE (2004) Biochemistry 43:16142–16152PubMedCrossRefGoogle Scholar
  37. 37.
    Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Nature 370:621–628PubMedCrossRefGoogle Scholar
  38. 38.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, OxfordGoogle Scholar
  39. 39.
    Zdravkova M, Yordanov ND (1994) Appl Magn Reson 6:83–105CrossRefGoogle Scholar
  40. 40.
    Albanese NF, Chasteen ND (1978) J Phys Chem 82:910–914CrossRefGoogle Scholar
  41. 41.
    van Willigen H (1980) J Magn Reson 39:37–46Google Scholar
  42. 42.
    Mustafi D, Makinen MW (1988) Inorg Chem 27:3360–3368CrossRefGoogle Scholar
  43. 43.
    Tyryshkin AM, Dikanov SA, Evelo RG, Hoff AJ (1992) J Chem Phys 97:42–49CrossRefGoogle Scholar
  44. 44.
    Tyryshkin AM, Dikanov SA, Goldfarb D (1993) J Magn Reson 105:271–283CrossRefGoogle Scholar
  45. 45.
    Larsen SC (2001) J Phys Chem A 105:8333–8338CrossRefGoogle Scholar
  46. 46.
    Dikanov SA, Liboiron BD, Orvig C (2002) J Am Chem Soc 124:2969–2978PubMedCrossRefGoogle Scholar
  47. 47.
    Pecoraro VL, Hermes JD, Cleland WW (1984) Biochemistry 23:5262–5271PubMedCrossRefGoogle Scholar
  48. 48.
    Sigel H (1987) Eur J Biochem 165:65–72PubMedCrossRefGoogle Scholar
  49. 49.
    Nechay BR, Nanninga LB, Nechay PSE (1986) Arch Biochem Biophys 251:128–138PubMedCrossRefGoogle Scholar
  50. 50.
    Alberico E, Dewaele D, Kiss T, Micera G (1995) J Chem Soc Dalton Trans 425–430Google Scholar
  51. 51.
    Imam S, Eady RR (1980) FEBS Lett 110:35–38PubMedCrossRefGoogle Scholar
  52. 52.
    Schweins T, Geyer M, Scheffzek K, Warshel A, Kalbitzer HR, Wittinghofer A (1995) Struct Biol 2:36–43CrossRefGoogle Scholar
  53. 53.
    Cheng H, Sukal S, Callender R, Leyh TS (2001) J Biol Chem 276:9931–9935PubMedCrossRefGoogle Scholar
  54. 54.
    Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) EMBO J 9:2351–2359PubMedGoogle Scholar
  55. 55.
    Ye M, Shima F, Muraoka S, Liao J, Okamoto H, Yamamoto M, Tamura A, Yagi N, Ueki T, Kataoka T (2005) J Biol Chem 280:31267–31275PubMedCrossRefGoogle Scholar
  56. 56.
    Gasper R, Scrima A, Wittinghofer A (2006) J Biol Chem 281:27492–27502PubMedCrossRefGoogle Scholar
  57. 57.
    Schmid B, Einsle O, Chiu H-J, Willing A, Yoshida M, Howard JB, Rees DC (2002) Biochemistry 41:15557–15565PubMedCrossRefGoogle Scholar
  58. 58.
    Seefeldt LC, Mortenson LE (1993) Protein Sci 2:93–102PubMedCrossRefGoogle Scholar
  59. 59.
    Ryle MJ, Seefeldt LC (1996) Biochemistry 35:4766–4775PubMedCrossRefGoogle Scholar
  60. 60.
    Wolle D, Dean DR, Howard JB (1992) Science 258:992–995PubMedCrossRefGoogle Scholar
  61. 61.
    Ashby GA, Thorneley NF (1987) Biochem J 246:455–465PubMedGoogle Scholar
  62. 62.
    Ryle MJ, Seefeldt LC (2000) J Biol Chem 275:6214–6219PubMedCrossRefGoogle Scholar
  63. 63.
    Petersen J, Gessner C, Fisher K, Mitchell CJ, Lowe DJ, Lubitz W (2005) Biochem J 391:527–539PubMedCrossRefGoogle Scholar
  64. 64.
    Florián J, Warshel A (1998) J Phys Chem B 102:719–734CrossRefGoogle Scholar
  65. 65.
    Cavalli A, Carloni P (2001) J Am Chem Soc 124:3763–3768CrossRefGoogle Scholar
  66. 66.
    Pham DN, Burgess BK (1993) Biochemistry 32:13725–13731PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • Jan Petersen
    • 1
  • Claire J. Mitchell
    • 1
  • Karl Fisher
    • 1
    • 2
  • David J. Lowe
    • 1
  1. 1.Department of Biological ChemistryJohn Innes CentreNorwichUK
  2. 2.Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations