Structural basis for VO2+ inhibition of nitrogenase activity (A): 31P and 23Na interactions with the metal at the nucleotide binding site of the nitrogenase Fe protein identified by ENDOR spectroscopy

Original Paper

Abstract

We previously reported the vanadyl hyperfine couplings of VO2+–ATP and VO2+–ADP complexes in the presence of the nitrogenase Fe protein from Klebsiella pneumoniae (Petersen et al. in Biochemistry 41:13253–13263, 2002). It was demonstrated that different VO2+–nucleotide coordination environments coexist and are distinguishable by electron paramagnetic resonance (EPR) spectroscopy. Here orientation-selective continuous-wave electron–nuclear double resonance (ENDOR) spectra have been investigated especially in the low-radio-frequency range in order to identify superhyperfine interactions with nuclei other than protons. Some of these resonances have been attributed to the presence of a strong interaction with a 31P nucleus although no resolvable superhyperfine structure due to 31P or other nuclei was detected in the EPR spectra. The superhyperfine coupling component is determined to be about 25 MHz. Such a 31P coupling is consistent with an interaction of the metal with phosphorus from a directly, equatorially coordinated nucleotide phosphate group(s). Additionally, novel more prominent 31P ENDOR signals are detected in the low-frequency region. Some of these correspond to a relatively weak 31P coupling. This coupling is present with ATP for all pH forms but is absent with ADP. The ENDOR resonances of these weakly coupled 31P are likely to originate from an interaction of the metal with a nucleotide phosphate group of the nucleoside triphosphate and are attributed to a phosphorus with axial characteristics. Another set of resonances, split about the nuclear Zeeman frequency of 23Na, was detected, suggesting that a monovalent Na+ ion is closely associated with the divalent metal–nucleotide binding site. Na+ replacement by K+ unambiguously confirmed that ENDORs at radio frequencies between 3.0 and 4.5 MHz arise from an interaction with Na+ ions. In contrast to the low-frequency 31P signal, these resonances are present in spectra with both ADP and ATP, and for both low- and neutral-pH forms, although slight differences are detected, showing that these are sensitive to the nucleotide and pH.

Keywords

Metalloenzymes Nitrogenase Fe protein Nucleotides Electron paramagnetic resonance 

Abbreviations

ADP

Adenosine 5′-diphosphate

ATP

Adenosine 5′-triphosphate

ENDOR

Electron–nuclear double resonance

EPR

Electron paramagnetic resonance

ESEEM

Electron spin echo envelope modulation

HYSCORE

Hyperfine sublevel correlation

Kp2

Nitrogenase Fe protein from Klebsiella pneumoniae

Tris

Tris(hydroxymethyl)aminomethane

Notes

Acknowledgments

We gratefully acknowledge the help of C.J. Mitchell for preparing some of the samples. EPR simulations of the VO spectra were conducted using the program LSIM written by D. Collison and kindly provided by S. Fairhurst. D.J.L. thanks BBSRC for financial support through the Core Strategic Grant to the John Innes Centre.

Supplementary material

References

  1. 1.
    Thompson KH, McNeill JH, Orvig C (1999) Chem Rev 99:2561–2571PubMedCrossRefGoogle Scholar
  2. 2.
    Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D (2003) Coord Chem Rev 237:3–11CrossRefGoogle Scholar
  3. 3.
    Djordjevic C (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vanadium and its role in life. Marcel Dekker, New York, pp 595–616Google Scholar
  4. 4.
    Evangelou AM (2002) Crit Rev Oncol Hematol 42:249–265PubMedCrossRefGoogle Scholar
  5. 5.
    Davies DR, Hol GJ (2004) FEBS Lett 577:315–321PubMedCrossRefGoogle Scholar
  6. 6.
    Simons TJB (1979) Nature 281:337–338PubMedCrossRefGoogle Scholar
  7. 7.
    Stankiewicz PJ, Tracey AS, Crans DC (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 31. Marcel Dekker, Inc., New York, Basel, Hong Kong, pp 287–324Google Scholar
  8. 8.
    Mortenson LE, Seefeldt LC, Morgan TV, Bolin JT (1993) In: Meister A (ed) Advances in enzymology, vol 67. Wiley, Chichester, pp 299–374Google Scholar
  9. 9.
    Zumft WG, Mortenson LE, Palmer G (1974) Eur J Biochem 46:525–535PubMedCrossRefGoogle Scholar
  10. 10.
    Yates MG (1972) Eur J Biochem 29:386–392PubMedCrossRefGoogle Scholar
  11. 11.
    Walker GA, Mortenson LE (1974) Biochemistry 13:2382–2388PubMedCrossRefGoogle Scholar
  12. 12.
    Stephens PJ, McKenna CE, Smith BE, Nguyen HT, McKenna MC, Thomson AJ, Devlin F, Jones JB (1979) Proc Natl Acad Sci USA 76:2585–2589PubMedCrossRefGoogle Scholar
  13. 13.
    Chen L, Gavini N, Tsuruta H, Eliezer D, Burgess BK, Doniach S, Hodgson KO (1994) J Biol Chem 269:3290–3294PubMedGoogle Scholar
  14. 14.
    Meyer J, Gaillard J, Moulis J-M (1988) Biochemistry 27:6150–6156PubMedCrossRefGoogle Scholar
  15. 15.
    Orme-Johnson WH, Hamilton WD, Ljones T, Tso MYW, Burris RH, Shah VK, Brill WJ (1972) Proc Natl Acad Sci USA 69:3142–3145PubMedCrossRefGoogle Scholar
  16. 16.
    Smith BE, Lowe DJ, Bray RC (1973) Biochem J 135:331–341PubMedGoogle Scholar
  17. 17.
    Morgan TV, McCracken J, Orme-Johnson WH, Mims WB, Mortenson LE, Peisach J (1990) Biochemistry 29:3077–3082PubMedCrossRefGoogle Scholar
  18. 18.
    Seefeldt LC, Mortenson LE (1993) Protein Sci 2:93–102PubMedCrossRefGoogle Scholar
  19. 19.
    Bishop EO, Lambert MD, Orchard D, Smith BE (1977) Biochim Biophys Acta 482:286–300PubMedGoogle Scholar
  20. 20.
    Petersen J, Gessner C, Fisher K, Mitchell CJ, Lowe DJ, Lubitz W (2005) Biochem J 391:527–539PubMedCrossRefGoogle Scholar
  21. 21.
    Petersen J, Fisher K, Mitchell CJ, Lowe DJ (2002) Biochemistry 41:13253–13263PubMedCrossRefGoogle Scholar
  22. 22.
    Chasteen ND (1993) Methods in enzymology. In: Riordan JF, Vallee BL (eds) Metallobiochemistry, vol 227. Academic Press, London, pp 232–244Google Scholar
  23. 23.
    Sen S, Krishnakumar A, McClead J, Johnson MK, Seefeldt MC, Szilagyi RK, Peters JW (2006) J Inorg Biochem 100:1041–1052PubMedCrossRefGoogle Scholar
  24. 24.
    Eady RR, Smith BE, Cook KA, Postgate JR (1972) Biochem J 128:655–675PubMedGoogle Scholar
  25. 25.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, OxfordGoogle Scholar
  26. 26.
    Tipton PA, McCracken J, Cornelius JB, Peisach J (1989) Biochemistry 28:5720–5728PubMedCrossRefGoogle Scholar
  27. 27.
    Hoogstraten CG, Grant CV, Horton TE, DeRose VJ, Britt RD (2002) J Am Chem Soc 124:834–841PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffman BM, DeRose VJ, Doan PE, Gurbiel RJ, Houseman ALP, Telser J (1993) Biological magnetic resonance. In: Berliner LJ, Reuben J (eds) vol 13. Springer, Heidelberg, pp 151–214Google Scholar
  29. 29.
    Mims WB, Peisach J (1989) In: Hoff AJ (ed) Advanced EPR, applications in biology and biochemistry. Elsevier, Amsterdam, pp 1–57Google Scholar
  30. 30.
    van Willigen H, Chandrashekar TK (1983) J Am Chem Soc 105:4232–4235CrossRefGoogle Scholar
  31. 31.
    Pöppl A, Rudolf T, Manikandan P, Goldfarb D (2000) J Am Chem Soc 122:10194–10200CrossRefGoogle Scholar
  32. 32.
    Kirmse R, Böttcher R, Willems JP, Reijerse EJ, DeBoer E (1991) J Chem Soc Faraday Trans 87:3105–3111CrossRefGoogle Scholar
  33. 33.
    Sabbe K, Callens F, Boesman E (1998) Appl Magn Reson 15:539–555CrossRefGoogle Scholar
  34. 34.
    Luca V, MacLachlan DJ, Bramley R (1999) Phys Chem Chem Phys 1:2597–2606CrossRefGoogle Scholar
  35. 35.
    Boechat CB, Terra J, Eon J-G, Ellis DE, Rossi AM (2003) Phys Chem Chem Phys 5:44290–4298CrossRefGoogle Scholar
  36. 36.
    Gutjahr M, Hoentsch J, Böttcher R, Storcheva O, Köhler K, Pöppl A (2004) J Am Chem Soc 126:2905–2911PubMedCrossRefGoogle Scholar
  37. 37.
    Kurreck H, Kirste B, Lubitz W (1988) Electron nuclear double resonance spectroscopy of radicals in solution; application to organic and biological chemistry. VCH Publishers, New YorkGoogle Scholar
  38. 38.
    Buy C, Matsui T, Andrianambinintsoa S, Sigalat C, Girault G, Zimmermann J-L (1996) Biochemistry 35:14281–14293PubMedCrossRefGoogle Scholar
  39. 39.
    Mustafi D, Telser J, Makinen MW (1992) J Am Chem Soc 114:6219–6226CrossRefGoogle Scholar
  40. 40.
    Alberico E, Dewaele D, Kiss T, Micera G (1995) J Chem Soc Dalton Trans 425–430Google Scholar
  41. 41.
    Gromov I, Shane J, Forrer J, Rakhmatoullin R, Rozentzwaig Y, Schweiger A (2001) J Magn Reson 149:196–203PubMedCrossRefGoogle Scholar
  42. 42.
    Markham GD, Leyh TS (1987) J Am Chem Soc 109:599–600CrossRefGoogle Scholar
  43. 43.
    Markham GD (1984) Biochemistry 23:470–478PubMedCrossRefGoogle Scholar
  44. 44.
    Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) EMBO J 9:2351–2359PubMedGoogle Scholar
  45. 45.
    Dikanov SA, Liboiron BD, Orvig C (2002) J Am Chem Soc 124:2969–2978PubMedCrossRefGoogle Scholar
  46. 46.
    Petersen J, Michell CJ, Fisher K, Lowe DJ (2008) J Biol Inorg Chem (in press). doi: 10.1007/s00775-008-0364-9
  47. 47.
    Wittinghofer A (1997) Curr Biol 7:R682–R685PubMedCrossRefGoogle Scholar
  48. 48.
    Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Nature 387:370–376PubMedCrossRefGoogle Scholar
  49. 49.
    Jang SB, Seefeldt LC, Peters JW (2000) Biochemistry 39:14745–14752PubMedCrossRefGoogle Scholar
  50. 50.
    Suelter CH (1970) Science 168:789–795PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang C, Markham GD, LoBrutto R (1993) Biochemistry 32:9866–9873PubMedCrossRefGoogle Scholar
  52. 52.
    Schneider B, Sigalat C, Amano T, Zimmermann J-L (2000) Biochemistry 39:15500–15512PubMedCrossRefGoogle Scholar
  53. 53.
    Mildvan AS (1974) Ann Rev Biochem 43:357–399PubMedCrossRefGoogle Scholar
  54. 54.
    Mildvan AS, Sloan DL, Fung CH, Gupta RK, Melamud E (1976) J Biol Chem 251:2431–2434PubMedGoogle Scholar
  55. 55.
    Larsen TM, Benning MM, Wesenberg GE, Rayment I, Reed GH (1997) Arch Biochem Biophys 345:199–206PubMedCrossRefGoogle Scholar
  56. 56.
    Larsen TM, Benning MM, Rayment I, Reed GH (1998) Biochemistry 37:6247–6255PubMedCrossRefGoogle Scholar
  57. 57.
    Larsen TM, Loughlin LT, Holden HM, Rayment I, Reed GH (1994) Biochemistry 33:6301–6309PubMedCrossRefGoogle Scholar
  58. 58.
    Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (1998) Structure 6:195–210PubMedCrossRefGoogle Scholar
  59. 59.
    Lord KA, Reed GH (1987) Inorg Chem 26:1464–1466CrossRefGoogle Scholar
  60. 60.
    Werneburg BG, Ash DE (1997) Biochemistry 36:14392–14402PubMedCrossRefGoogle Scholar
  61. 61.
    Shimizu T, Mims WB, Peisach J, Davis JL (1979) J Chem Phys 70:2249–2254CrossRefGoogle Scholar
  62. 62.
    Buy C, Girault G, Zimmermann J-L (1996) Biochemistry 35:9880–9891PubMedCrossRefGoogle Scholar
  63. 63.
    Deits TL, Howard JB (1990) J Biol Chem 265:3859–3867PubMedGoogle Scholar
  64. 64.
    Zimmermann J-L, Schneider B, Morlet S, Amano T, Sigalat C (2000) Spectrochim Acta A56:285–299Google Scholar
  65. 65.
    Bogumil R, Hüttermann J, Kappl R, Stabler R, Sudfeldt C, Witzel H (1991) Eur J Biochem 196:305–312PubMedCrossRefGoogle Scholar
  66. 66.
    Mulks CF, Kirste B, vanWilligen H (1982) J Am Chem Soc 104:5906–5911CrossRefGoogle Scholar
  67. 67.
    Hanna PM, Chasteen ND, Rottman GA, Aisen P (1991) Biochemistry 30:9210–9216PubMedCrossRefGoogle Scholar
  68. 68.
    Petersen J, Hawkes TR, Lowe DJ (1997) J Biol Inorg Chem 2:308–319CrossRefGoogle Scholar
  69. 69.
    Petersen J, Hawkes TR, Lowe DJ (1998) J Am Chem Soc 120:10978–10979CrossRefGoogle Scholar
  70. 70.
    Houseman ALP, LoBrutto R, Frasch WD (1994) Biochemistry 33:10000–10006PubMedCrossRefGoogle Scholar
  71. 71.
    Zimmermann J-L, Amano T, Sigalat C (1999) Biochemistry 38:15343–15351PubMedCrossRefGoogle Scholar
  72. 72.
    Crampton D J, LoBrutto R, Frasch WD (2001) Biochemistry 40:3710–3716PubMedCrossRefGoogle Scholar
  73. 73.
    Houseman ALP, LoBrutto R, Frasch WD (1995) Biochemistry 34:3277–3285PubMedCrossRefGoogle Scholar
  74. 74.
    Sakurai H, Goda T, Yoshimura T (1982) Biochem Biophys Res Commun 108:474–478PubMedCrossRefGoogle Scholar
  75. 75.
    Sakurai H, Goda T, Shimomura S, Yoshimura T (1982) Biochem Biophys Res Commun 104:1421–1426PubMedCrossRefGoogle Scholar
  76. 76.
    Baran EJ (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vanadium and its role in life. Marcel Dekker, New York, pp 129–146Google Scholar
  77. 77.
    Sigel H (1987) Eur J Biochem 165:65–72PubMedCrossRefGoogle Scholar
  78. 78.
    Dikanov SA, Liboiron BD, Thompson KH, Vera E, Yuen VG, McNeill JH, Orvig C (1999) J Am Chem Soc 121:11004–11005CrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.Department of Biological ChemistryJohn Innes CentreNorwichUK
  2. 2.Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations