Inhibition of cathepsin B by Au(I) complexes: a kinetic and computational study

  • Shamila S. Gunatilleke
  • Cesar Augusto F. de Oliveira
  • J. Andrew McCammon
  • Amy M. Barrios
Original Paper

Abstract

Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and the structure–activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency. Here we employ a combination of experimental and computational investigations into the effect of changes in the phosphine ligand of auranofin on its in vitro inhibition of cathepsin B. Sequential replacement of the ethyl substituents of triethylphosphine by phenyl groups leads to increasing potency in the resultant Au(I) complexes, due in large part to favorable interactions of the more sterically bulky Au(I)–PR3 fragments with the enzyme active site.

Keywords

Enzyme inhibition Gold Chrysotherapy Cathepsins Molecular modeling 

Notes

Acknowledgements

A.M.B. and S.S.G. acknowledge the College of Letters, Arts and Sciences and the WiSE program at the University of Southern California for generous support. The work done by C.A.F.O. and J.A.M. was supported in part by grants from NSF, NIH, the Center for Theoretical Biological Physics, the National Biomedical Computation Resource, San Diego Supercomputing Center and Accelrys Inc.

References

  1. 1.
    Koch R (1927) Dtsch Med Wochenschr 16Google Scholar
  2. 2.
    Forestier J (1935) J Lab Clin Med 20:827Google Scholar
  3. 3.
    Empire Rheumatism Council (1961) Ann Rheum Dis 20:315CrossRefGoogle Scholar
  4. 4.
    Yelin E, Wanke LA (1999) Arthritis Rheum 42:1209PubMedCrossRefGoogle Scholar
  5. 5.
    Wolfe F (1996) J Rheumatol Suppl 44:13PubMedGoogle Scholar
  6. 6.
    Baker DG, Rabinowitz JL (1986) J Clin Pharmacol 26:2PubMedGoogle Scholar
  7. 7.
    Weidauer E, Yasuda Y, Biswal BK, Cherny M, James MNG, Brömme D (2007) Biol Chem 388:331PubMedCrossRefGoogle Scholar
  8. 8.
    Fricker SP (1996) Gold Bull 29:53Google Scholar
  9. 9.
    Shaw CF III (1999) Chem Rev 99:2589CrossRefGoogle Scholar
  10. 10.
    Rohozková D, Steven FS (1983) Br J Pharmacol 79:181PubMedGoogle Scholar
  11. 11.
    Paltemaa S (1968) Acta Rheum Scand 14:161PubMedGoogle Scholar
  12. 12.
    Urig S, Fritz-Wolf K, Réau R, Herold-Mende C, Tóth K, Davioud-Charvet E, Becker K (2006) Angew Chem Int Ed Engl 45:1881PubMedCrossRefGoogle Scholar
  13. 13.
    Rigobello MP, Messori L, Marcon G, Agostina Cinellu M, Bragadin M, Folda A, Scutari G, Bindoli A (2004) J Inorg Biochem 98:1634CrossRefGoogle Scholar
  14. 14.
    Erdogan E, Lamark T, Stallings-Mann M, Jamieson L, Pellecchia M, Thompson EA, Johansen T, Fields AP (2006) J Biol Chem 281:28450PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Q, Janzen N, Ramachandran C, Jirik F (1997) Biochem Pharmacol 54:703PubMedCrossRefGoogle Scholar
  16. 16.
    Snyder RM, Mirabelli CK, Crooke ST (1987) Semin Arthritis Rheum 17:71PubMedCrossRefGoogle Scholar
  17. 17.
    Honey K, Rudensky AY (2003) Nat Rev Immunol 3:472PubMedCrossRefGoogle Scholar
  18. 18.
    Gunatilleke SS, Barrios AM (2006) J Med Chem 49:3933PubMedCrossRefGoogle Scholar
  19. 19.
    Barrett AJ (1980) Biochem J 187:909PubMedGoogle Scholar
  20. 20.
    Chircorian A, Barrios AM (2004) Bioorg Med Chem Lett 14:5113PubMedCrossRefGoogle Scholar
  21. 21.
    Feild MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700CrossRefGoogle Scholar
  22. 22.
    Singh UC, Kollman PA (1986) J Comput Chem 7:718CrossRefGoogle Scholar
  23. 23.
    Warshel A, Levitt M (1976) J Mol Biol 103:227PubMedCrossRefGoogle Scholar
  24. 24.
    Jorgensen WL, Tubert-Brohman I, Guimarães CRW (2004) Abstr Pap Am Chem Soc 227:U902Google Scholar
  25. 25.
    Tubert-Brohman I, Guimarães CRW, Jorgensen WL (2005) J Chem Theory Comput 1:817CrossRefPubMedGoogle Scholar
  26. 26.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179CrossRefGoogle Scholar
  27. 27.
    Case DA, Perlman DA, Caldwell JW, Chetham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) AMBER. University of California, San FranciscoGoogle Scholar
  28. 28.
    Hockney RW (1968) Bull Am Phys Soc 13:1747Google Scholar
  29. 29.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  30. 30.
    Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N, Bode W (1991) EMBO J 10:2321PubMedGoogle Scholar
  31. 31.
    Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS (2006) J Biol Chem 281:12824PubMedCrossRefGoogle Scholar
  32. 32.
    LaLonde JM, Zhao B, Smith WW, Janson CA, DesJarlais RL, Tomaszek TA, Carr TJ, Thompson SK, Oh H-J, Yamashita DS, Veber DF, Abdel-Meguid SS (1998) J Med Chem 41:4567PubMedCrossRefGoogle Scholar
  33. 33.
    McGrath ME (1999) Annu Rev Biophys Biomol Struct 28:181PubMedCrossRefGoogle Scholar
  34. 34.
    Turk V, Turk B, Turk D (2001) EMBO J 20:4629PubMedCrossRefGoogle Scholar
  35. 35.
    Tolman CA (1977) Chem Rev 77(3):313CrossRefGoogle Scholar
  36. 36.
    Sutton BM, McGusty E, Walz DT, DiMartino MJ (1972) J Med Chem 15(11):1095PubMedCrossRefGoogle Scholar
  37. 37.
    Whitehouse MW, Cookson PD, Siasios G, Tiekink ERT (1998) Met Based Drugs 5(4):245CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  • Shamila S. Gunatilleke
    • 1
  • Cesar Augusto F. de Oliveira
    • 2
  • J. Andrew McCammon
    • 2
  • Amy M. Barrios
    • 1
    • 3
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Howard Hughes Medical Institute, Center for Theoretical Biological Physics, Department of Chemistry and Biochemistry, Department of PharmacologyUniversity of California at San DiegoLa JollaUSA
  3. 3.Department of Medicinal ChemistryUniversity of Utah College of PharmacySalt Lake CityUSA

Personalised recommendations