Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding

Minireview

Abstract

The electron-transfer activities of flavin and pterin coenzymes can be fine-tuned by coordination of metal ions, protonation and hydrogen bonding. Formation of hydrogen bonds with a hydrogen-bond receptor in metal–flavin complexes is made possible depending on the type of coordination bond that can leave the hydrogen-bonding sites. The electron-transfer catalytic functions of flavin and pterin coenzymes are described by showing a number of examples of both thermal and photochemical redox reactions, which proceed by controlling the electron-transfer reactivity of coenzymes with metal ion binding, protonation and hydrogen bonding.

Keywords

Cofactor Electron transfer Photoreduction Flavin Pterin 

Notes

Acknowledgments

The authors gratefully acknowledge the contributions of their collaborators and coworkers mentioned in the references. The authors acknowledge continuous support of their study by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    Müller F (ed) (1991) CRC, Boca Raton, vol 1–3Google Scholar
  2. 2.
    Ghisla S, Massey V (1989) Eur J Biochem 181:1–17PubMedCrossRefGoogle Scholar
  3. 3.
    Bruice TC (1980) Acc Chem Res 13:256–262CrossRefGoogle Scholar
  4. 4.
    Walsh C (1980) Acc Chem Res 13:148–155CrossRefGoogle Scholar
  5. 5.
    Blakley RL, Benkovic SJ (1985) Chemistry and biochemistry of pterins. Wiley, New YorkGoogle Scholar
  6. 6.
    Niemz A, Rotello V (1999) Acc Chem Res 32:44–52CrossRefGoogle Scholar
  7. 7.
    Rotello V (2001) In: Balzani V (ed) Electron transfer in chemistry, vol 5. Wiley-VCH, Weinheim, pp 68–87Google Scholar
  8. 8.
    Breinlinger E, Rotello VJ (1997) J Am Chem Soc 119:1165–1166CrossRefGoogle Scholar
  9. 9.
    Greaves MD, Rotello VM (1997) J Am Chem Soc 119:10569–10572CrossRefGoogle Scholar
  10. 10.
    Cuello AO, McIntosh CM, Rotello VM (2000) J Am Chem Soc 122:3517–3521CrossRefGoogle Scholar
  11. 11.
    Breinlinger EC, Niemz A, Rotello V (1995) J Am Chem Soc 117:5379–5380CrossRefGoogle Scholar
  12. 12.
    Palfey B, Moran G, Entsch B, Ballou D, Massey V (1999) Biochemistry 38:1153–1158PubMedCrossRefGoogle Scholar
  13. 13.
    Breinlinger EC, Keenan CJ, Rotello VM (1998) J Am Chem Soc 120:8606–8609CrossRefGoogle Scholar
  14. 14.
    Hasford J, Kemnitzer W, Rizzo C (1997) J Org Chem 62:5244–5245CrossRefGoogle Scholar
  15. 15.
    Hemmerich P, Lauterwein J (1973) In: Eichhorn GL (ed) The structure and reactivity of flavin–metal complexes, in inorganic biochemistry. Elsevier, Amsterdam, pp 1168–1190Google Scholar
  16. 16.
    Clarke MJ (1984) Comments Inorg Chem 3:133–151CrossRefGoogle Scholar
  17. 17.
    Cadet J, Vigny P (1990) In: Morrison H (ed) Bioorganic photochemistry, vol 1. Wiley, New York, pp 1–272Google Scholar
  18. 18.
    Heelis PF (1982) Chem Soc Rev 11:15–39CrossRefGoogle Scholar
  19. 19.
    Tollin G (1995) J Bioenerg Biomembr 27:303–309PubMedCrossRefGoogle Scholar
  20. 20.
    Tollin G (2001) In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, Weinheim, pp 202–231Google Scholar
  21. 21.
    Heelis PF (1991) In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol 1. CRC, Boca Raton, pp 171–193Google Scholar
  22. 22.
    Fukuzumi S, Tanaka T (1988) In: Fox MA, Chanon M (ed) Photoinduced electron transfer, part C. Elsevier, Amsterdam, pp 636–687Google Scholar
  23. 23.
    Fukuzumi S (1997) Bull Chem Soc Jpn 70:1–28CrossRefGoogle Scholar
  24. 24.
    Fukuzumi S (1992) In: Mariano PS (ed) Advances in electron transfer chemistry, vol 2. JAI, Greenwich, pp 67–175Google Scholar
  25. 25.
    Fukuzumi S, Itoh S (1999) In: Neckers DC (ed) Advances in photochemistry, vol 25. Wiley-Interscience, New York, pp 107–172Google Scholar
  26. 26.
    Burgstaller P, Famulok M (1997) J Am Chem Soc 119:1137–1138CrossRefGoogle Scholar
  27. 27.
    Burgmayer SJN (1998) Struct Bonding 92:67–119Google Scholar
  28. 28.
    Pfleiderer W (1992) J Heterocycl Chem 29:583–605Google Scholar
  29. 29.
    Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Science 279:2121–2126PubMedCrossRefGoogle Scholar
  30. 30.
    Hemmerich P, Veeger C, Wood HCS (1965) Angew Chem Int Ed Engl 4:671–687PubMedCrossRefGoogle Scholar
  31. 31.
    Clarke MJ (1980) Rev Inorg Chem 2:27–51Google Scholar
  32. 32.
    Kaim W, Schwederski B, Heilmann O, Hornung FM (1999) Coord Chem Rev 182:323–342CrossRefGoogle Scholar
  33. 33.
    Fukuzumi S, Kuroda S, Tanaka T (1984) Chem Lett 417–420Google Scholar
  34. 34.
    Fukuzumi S, Kuroda S, Tanaka T (1985) J Am Chem Soc 107:3020–3027CrossRefGoogle Scholar
  35. 35.
    Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O (2001) J Phys Chem A 105:10501–10510CrossRefGoogle Scholar
  36. 36.
    Fukuzumi S, Ohkubo K (2000) Chem Eur J 6:4532–4535CrossRefGoogle Scholar
  37. 37.
    Ohkubo K, Menon SC, Orita A, Otera J, Fukuzumi S (2003) J Org Chem 68:4720–4726PubMedCrossRefGoogle Scholar
  38. 38.
    Fukuzumi S, Ohkubo K (2002), J Am Chem Soc 124:10270–10271PubMedCrossRefGoogle Scholar
  39. 39.
    Rehm D, Weller A. (1970) Isr J Chem 8:259–271Google Scholar
  40. 40.
    Fukuzumi S, Fujita M, Otera J, Fujita Y (1992) J Am Chem Soc 114:10271CrossRefGoogle Scholar
  41. 41.
    Niemz A, Imbriglio J, Rotello VM (1997) J Am Chem Soc 119:887–892CrossRefGoogle Scholar
  42. 42.
    Eberlein G, Bruice TC (1983) J Am Chem Soc 105:6685–6697CrossRefGoogle Scholar
  43. 43.
    Nanni EJ Jr, Sawyer DT, Ball SS, Bruice TC (1981) J Am Chem Soc 103:2797–2802CrossRefGoogle Scholar
  44. 44.
    Maeda-Yorita K, Massey V (1993) J Biol Chem 268:4134–4144PubMedGoogle Scholar
  45. 45.
    Fukuzumi S, Okamoto T (1994) J Chem Soc Chem Commun 521–522Google Scholar
  46. 46.
    Heelis PF, Parsons BJ, Phillips GO, McKeller JF (1981) Photochem Photobiol 33:7CrossRefGoogle Scholar
  47. 47.
    Grodowski MS, Veyret B, Weiss K (1977) Photochem Photobiol 26:341–352CrossRefGoogle Scholar
  48. 48.
    Fukuzumi S, Okamoto T, Otera J (1994) J Am Chem Soc 116:5503–5504CrossRefGoogle Scholar
  49. 49.
    Fukuzumi S, Satoh N, Okamoto T, Yasui K, Suenobu T, Seko Y, Fujitsuka M, Ito O (2001) J Am Chem Soc 123:7756–7766PubMedCrossRefGoogle Scholar
  50. 50.
    Fukuzumi S, Kuroda S, Tanaka T (1986) J Chem Soc Perkin Trans 2 25–29Google Scholar
  51. 51.
    Davies AG, Ingold KU, Roberts BP, Tudor R (1971) J Chem Soc B 698–712Google Scholar
  52. 52.
    Korcek S, Watts GB, Ingold KU (1972) J Chem Soc Perkin Trans 2 242–248Google Scholar
  53. 53.
    Brindley PB, Scotton MJ (1981) J Chem Soc Perkin Trans 2 419–423Google Scholar
  54. 54.
    Fukuzumi S, Mochida M, Kochi JK (1979) J Am Chem Soc 101:5961–5972CrossRefGoogle Scholar
  55. 55.
    Fukuzumi S, Wong CL, Kochi JK (1980) J Am Chem Soc 102:2928–2939CrossRefGoogle Scholar
  56. 56.
    Howard JA (1972) Adv Free Radic Chem 4:49–173Google Scholar
  57. 57.
    Clarke MJ, Dowling M, Garafalo AR, Brennan TF (1980) J Biol Chem 255:3472–3481PubMedGoogle Scholar
  58. 58.
    Miyazaki S, Ohkubo K, Kojima T, Fukuzumi S (2007) Angew Chem Int Ed 46:905–908CrossRefGoogle Scholar
  59. 59.
    Koizumi T, Tomon T, Tanaka K (2005) J Organomet Chem 690:4272–4279CrossRefGoogle Scholar
  60. 60.
    Harvey BG, Arif AM, Ernst RD (2004) Polyhedron 23:2725–2731CrossRefGoogle Scholar
  61. 61.
    Koizumi T, Tomon T, Tanaka K (2003) Bull Chem Soc Jpn 76:1969–1975CrossRefGoogle Scholar
  62. 62.
    Staniewicz RJ, Hendricker DG (1977) J Am Chem Soc 99:6581–6588CrossRefGoogle Scholar
  63. 63.
    Eriksson LEG, Ethrenberg A (1964) Acta Chem Scand 18:1437–1453Google Scholar
  64. 64.
    Heilmann O, Hornung FM, Kaim W, Fiedler J (1996) J Chem Soc Faraday Trans 92:4233–4238CrossRefGoogle Scholar
  65. 65.
    Româo MJ, Archer M, Moura Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176PubMedCrossRefGoogle Scholar
  66. 66.
    Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Science 272:1615–1621PubMedCrossRefGoogle Scholar
  67. 67.
    Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJG, Moura I (1999) Biochemistry 38:16366–16372PubMedCrossRefGoogle Scholar
  68. 68.
    Burgmayer SJN, Arkin MR, Bostick L, Dempster S, Everett KM, Layton HL, Paul KE, Rogge C, Rheingold AL (1995) J Am Chem Soc 117:5812–5823CrossRefGoogle Scholar
  69. 69.
    Burgmayer SJN, Kaufmann HL, Fortunato G, Hug P, Fisher B (1999) Inorg Chem 38:2607–2613CrossRefGoogle Scholar
  70. 70.
    Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, B. Schink B (1999) Eur J Biochem 264:176–182PubMedCrossRefGoogle Scholar
  71. 71.
    Hornung FM, Kaim W (1994) J Chem Soc Faraday Trans 90:2909–2912CrossRefGoogle Scholar
  72. 72.
    Odani A, Masuda H, Inukai K, Yamauchi O (1992) J Am Chem Soc 114:6294–6300CrossRefGoogle Scholar
  73. 73.
    Funahashi Y, Hara Y, Masuda H, Yamauchi O (1997) Inorg Chem 36:3869–3875CrossRefGoogle Scholar
  74. 74.
    Abelleira A, Galang RD, Clarke MJ (1990) Inorg Chem 29:633–639CrossRefGoogle Scholar
  75. 75.
    Bessenbacher C, Vogler C, Kaim W (1989) Inorg Chem 28:4645–4648CrossRefGoogle Scholar
  76. 76.
    Kojima T, Sakamoto T, Matsuda Y, Ohkubo K, Fukuzumi S (2003) Angew Chem Int Ed 42:4951–4954CrossRefGoogle Scholar
  77. 77.
    Miayzaki S, Kojima T, Sakamoto T, Matsumoto T, Ohkubo K, Fukuzumi S (2008) Inorg Chem 47:333–343CrossRefGoogle Scholar
  78. 78.
    Perkinson J, Brodie S, Yoon K, Mosny K, Carroll PJ, Morgan TV, Burgmayer SJN (1991) Inorg Chem 30:719–727CrossRefGoogle Scholar
  79. 79.
    Hornung FM, Heilmann O, Kaim W, Zalis S, Fiedler J (2000) Inorg Chem 39:4052–4058PubMedCrossRefGoogle Scholar
  80. 80.
    Fukuzumi S, Kuroda S, Goto T, Ishikawa K, Tanaka T (1989) J Chem Soc Perkin Trans 2:1047–1053Google Scholar
  81. 81.
    Dudley KH, Ehrenberg A, Hemmerich P, Müller F (1964) Helv Chim Acta 47:1354CrossRefGoogle Scholar
  82. 82.
    Fukuzumi S, Tanii K, Tanaka T (1989) Chem Lett 35–38Google Scholar
  83. 83.
    Ishikawa K, Fukuzumi S, Goto T, Tanaka T (1990) J Am Chem Soc 112:1577–1584CrossRefGoogle Scholar
  84. 84.
    Fukuzumi S, Ishikawa K, Tanaka T (1985) J Chem Soc Dalton Trans 899–904Google Scholar
  85. 85.
    Ishikawa K, Fukuzumi S, Tanaka T (1989) Inorg Chem 28:1661–1665CrossRefGoogle Scholar
  86. 86.
    Fukuzumi S, Tanii K, Tanaka T (1989) J Chem Soc Chem Commun 816–818Google Scholar
  87. 87.
    Fukuzumi S, Kuroda S (1999) Res Chem Intermed 25:789–811CrossRefGoogle Scholar

Copyright information

© SBIC 2008

Authors and Affiliations

  1. 1.Department of Material and Life Science, Graduate School of EngineeringOsaka University, SORST, Japan Science and Technology AgencySuita, OsakaJapan

Personalised recommendations