Skip to main content
Log in

The effect of nitric oxide on metal release from metallothionein-3: gradual unfolding of the protein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metallothionein-3 (MT-3), or neuronal growth inhibitory factor, which exhibits growth inhibitory activity, is a brain-specific metallothionein. In this study, the effect of nitric oxide (NO) on metal release (using Cd2+ as a probe) from MT-3 was examined by 113Cd and 2D [1H–15N] heteronuclear single-quantum coherence NMR spectroscopy. The exposure of human MT-3 to NO leads to a nonselective release of the three metals from the β-domain. In contrast to metallothionein-1 and metallothionein-2, two of the bound metals in the α-domain were also partially released, with the domain structure remaining almost unchanged. Further addition of NO resulted in the complete release of metals and concomitant unfolding of the protein. The preference of release of the two metals in the α-domain was attributed to the presence of two slightly different coordination environments for the four cadmium/zinc atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CA:

Cornu ammonis

DEA/NO:

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

DTT:

1,4-Dithiothreitol

GIF:

Growth inhibitory factor

GST:

Gluathione S-transferase

hMT-3:

Human metallothionein-3

HSQC:

Heteronuclear single-quantum coherence

ICP-MS:

Inductively coupled plasma mass spectrometry

MT:

Metallothionein

NOE:

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser enhancement spectroscopy

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Vallee BL (1995) Neurochem Int 27:23–33

    Article  PubMed  CAS  Google Scholar 

  2. Kägi JHR (1993) In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, Basel, pp 29–56

    Google Scholar 

  3. Öz G, Zangger K, Armitage IM (2001) Biochemistry 40:11433–11441

    Article  PubMed  CAS  Google Scholar 

  4. Sun H, Li H, Harvey I, Sadler PJ (1999) J Biol Chem 274:29094–29101

    Article  PubMed  CAS  Google Scholar 

  5. Kägi JHR, Schäffer A (1988) Biochemistry 27:8509–8515

    Article  PubMed  Google Scholar 

  6. Vašák M, Hasler DW (2000) Curr Opin Chem Biol 4:177–183

    Article  PubMed  Google Scholar 

  7. Otvoks JD, Armitage IM (1980) Proc Natl Acad Sci USA 77:7094–7098

    Article  Google Scholar 

  8. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) Neuron 7:337–347

    Article  PubMed  CAS  Google Scholar 

  9. Palmiter RD, Findley SD, Whitmore TE, Durnam DM (1992) Proc Natl Acad Sci USA 89:6333–6337

    Article  PubMed  CAS  Google Scholar 

  10. Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD (1994) J Neurosci 14:5844–5857

    PubMed  CAS  Google Scholar 

  11. Hidalgo J, Aschner M, Zatta P, Vašák M (2001) Brain Res Bull 55:133–145

    Article  PubMed  CAS  Google Scholar 

  12. Bogumil R, Faller P, Binz PA, Vašák M, Charnock JM, Garner CD (1998) Eur J Biochem 255:172–177

    Article  PubMed  CAS  Google Scholar 

  13. Faller P, Vašák M (1997) Biochemistry 36:13341–13348

    Article  PubMed  CAS  Google Scholar 

  14. Hasler DW, Faller P, Vašák M (1998) Biochemistry 37:14966–14973

    Article  PubMed  CAS  Google Scholar 

  15. Sewell AK, Jensen LT, Erickson JC, Palmiter RD, Winge DR (1995) Biochemistry 34:4740–4747

    Article  PubMed  CAS  Google Scholar 

  16. Palmiter RD (1998) Proc Natl Acad Sci USA 95:8428–8430

    Article  PubMed  CAS  Google Scholar 

  17. Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Crit Rev Biochem Mol Biol 35:35–70

    Article  PubMed  CAS  Google Scholar 

  18. Pearce LL, Gandley RE, Han W, Wasserloos K, Stitt M, Kanai AJ, McLaughlin MK, Pitt BR, Levitan ES (2000) Proc Natl Acad Sci USA 97:477–482

    Article  PubMed  CAS  Google Scholar 

  19. Law A, Gauthier S, Quirion R (2001) Brain Res Rev 35:73–96

    Article  PubMed  CAS  Google Scholar 

  20. Schwarz MA, Lazo JS, Yalowich JC, Allen WP, Whitmore M, Bergonia HA, Tzeng E, Billiar TR, Robbins PD, Lancaster JR, Pitt BR (1995) Proc Natl Acad Sci USA 92:4452–4456

    Article  PubMed  CAS  Google Scholar 

  21. Aravindakumar CT, Ceulemans J, De Ley M (1999) Biochem J 344:253–258

    Article  PubMed  CAS  Google Scholar 

  22. St Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR (2002) Am J Physiol Lung Cell Mol Physiol 282:L185–L192

    PubMed  CAS  Google Scholar 

  23. Kroncke KD, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Bettermann H, Breunig KD, Kolb-Bachofen V (1994) Biochem Biophys Res Commun 200:1105–1110

    Article  PubMed  CAS  Google Scholar 

  24. Misra RR, Hochadel JF, Smith GT, Cook JC, Waalkes MP, Wink DA (1996) Chem Res Toxicol 9:326–332

    Article  PubMed  CAS  Google Scholar 

  25. Katakai K, Liu J, Nakajima K, Keefer LK, Waalkes MP (2001) Toxicol Lett 119:103–108

    Article  PubMed  CAS  Google Scholar 

  26. Khatai L, Goessler W, Lorencova H, Zangger K (2004) Eur J Biochem 271:2408–2416

    Article  PubMed  CAS  Google Scholar 

  27. Zangger K, Öz G, Haslinger E, Kunert O, Armitage IM (2001) FASEB J 15:1303–1305

    PubMed  CAS  Google Scholar 

  28. Chen Y, Irie Y, Keung WM, Maret W (2002) Biochemistry 41:8360–8367

    Article  PubMed  CAS  Google Scholar 

  29. Yokoyama M, Koh J, Choi DW (1986) Neurosci Lett 71:351–355

    Article  PubMed  CAS  Google Scholar 

  30. Koh JY, Choi DW (1994) Neuroscience 60:1049–1057

    Article  PubMed  CAS  Google Scholar 

  31. Lee JY, Kim JH, Palmiter RD, Koh JY (2003) Exp Neurol 184:337–347

    Article  PubMed  CAS  Google Scholar 

  32. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) J Cell Biol 158:215–220

    Article  PubMed  CAS  Google Scholar 

  33. Moncada S, Palmer RMJ, Higgs EA (1991) Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  34. Nathan C (1992) FASEB J 6: 3051–3064

    PubMed  CAS  Google Scholar 

  35. Maret W (2000) J Nutr 130(Suppl 5):1455S–1458S

    PubMed  CAS  Google Scholar 

  36. Wang H, Cai B, Zhang Q, Li H, Sze KH, Huang ZX, Wu HM, Sun H (2006) FEBS Lett 580:795–800

    Article  PubMed  CAS  Google Scholar 

  37. Zheng Q, Yang WM, Yu WH, Cai B, Teng XC, Xie Y, Sun H, Zhang MJ, Huang ZX (2003) Protein Eng 16:865–870

    Article  PubMed  CAS  Google Scholar 

  38. Yu WH, Cai B, Gao Y, Xie Y, Huang ZX (2002) J Protein Chem 21:177–185

    Article  PubMed  CAS  Google Scholar 

  39. Vašák M(1991) Methods Enzymol 205:452–458

    PubMed  Google Scholar 

  40. Grassetti DR, Murray JF Jr (1967) Arch Biochem Biophys 119:41–49

    Article  PubMed  CAS  Google Scholar 

  41. Al-Deen ST, Hibbert DB, Hook JM, Wells RJ (2002) Anal Chim Acta 474:125–135

    Article  Google Scholar 

  42. Keefer LK, Nims RW, Davies KM, Wink DA (1996) Methods Enzymol 268:281–293

    Article  PubMed  CAS  Google Scholar 

  43. Piotto M, Saudek V, Sklenár V (1992) J Biomol NMR 2:661–665

    Article  PubMed  CAS  Google Scholar 

  44. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  45. Goddard D, Kneller G (2004) SPARKY 3. University of California, San Francisco

  46. Zangger K, Öz G, Otvos JD, Armitage IM (1999) Protein Sci 8:2630–2638

    PubMed  CAS  Google Scholar 

  47. Arseniev A, Schultze P, Wörgötter E, Braun W, Wagner G, Vašák M, Kägi JHR, Wüthrich K (1988) J Mol Biol 201:637–657

    Article  PubMed  CAS  Google Scholar 

  48. Schultze P, Wörgötter E, Braun W, Wagner G, Vašák M, Kägi JHR, Wüthrich K (1988) J Mol Biol 203:251–268

    Article  PubMed  CAS  Google Scholar 

  49. Messerle BA, Schäffer A, Vašák M, Kägi JHR, Wüthrich K (1990) J Mol Biol 214:765–779

    Article  PubMed  CAS  Google Scholar 

  50. Güntert P, Mumenthaler C, Wüthrich K (1997) J Mol Biol 273:283–298

    Article  PubMed  Google Scholar 

  51. Herrmann T, Güntert P, Wüthrich K (2002) J Mol Biol 319:209–227

    Article  PubMed  CAS  Google Scholar 

  52. Güntert P (2003) Prog NMR Spectrosc 43:105–125

    Article  CAS  Google Scholar 

  53. Koradi R, Billeter M, Wüthrich K (1996) J Mol Graph 14:29–32

    Google Scholar 

  54. DeLano WL (2004) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  55. Messerle BA, Schäffer A, Vašak M, Kägi JHR, Wüthrich K (1992) J Mol Biol 225:433–443

    Article  PubMed  CAS  Google Scholar 

  56. Li H, Otvos JD (1996) Biochemistry 35:13929–13936

    Article  PubMed  CAS  Google Scholar 

  57. Daniels MJ, Tuner-Cavet JS, Selkirk R, Sun H, Parkinson JA, Sadler PJ, Robinson NJ (1998) J Biol Chem 273:22957–22961

    Article  PubMed  CAS  Google Scholar 

  58. Faller P, Hasler DW, Zerbe O, Klauser S, Winge DR, Vašák M (1999) Biochemistry 38:10158–10167

    Article  PubMed  CAS  Google Scholar 

  59. Hasler DW, Jensen LT, Zerbe O, Winge DR, Vašák M (2000) Biochemistry 39:14567–14575

    Article  PubMed  CAS  Google Scholar 

  60. Schulman BA, Kim PS, Dobson CM, Redfield C (1997) Nat Struct Biol 4:630–634

    Article  PubMed  CAS  Google Scholar 

  61. Rigbly KE, Stillman MJ (2004) Biochem Biophys Res Commun 325:1271–1278

    Article  CAS  Google Scholar 

  62. Rigbly Duncan KE, Stillman MJ (2006) J Inorg Biochem 100:2101–107

    Article  CAS  Google Scholar 

  63. Palumaa P, Tammiste I, Kruusel K, Kangur L, Jörnvall H, Sillard R (2005) Biochim Biophys Acta 1747:205–211

    PubMed  CAS  Google Scholar 

  64. Erickson JC, Hollopeter G, Thomad SA, Froelick GJ, Palmiter RD (1997) J Neurosci 17:1271–1281

    PubMed  CAS  Google Scholar 

  65. Hamer DH (1986) Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  66. Cherian MG, Howell SB, Imura N, Klaassen CD, Koropatinick J, Lazo JS, Waalkes MP (1994) Toxicol Appl Pharmacol 126:1–5

    Article  PubMed  CAS  Google Scholar 

  67. Persechini A, McMillan K, Masters BS (1995) Biochemistry 34:15091–15095

    Article  PubMed  CAS  Google Scholar 

  68. Rasia RG, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO (2005) Proc Natl Acad Sci USA 102:4294–4299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC/RGC (to H.S.), National Science Foundation of China (to Z.X.H. and to H.S. for an Outstanding Young Scholar Award), the Area of Excellence (AoE) of the University Grants Committee of Hong Kong and the University of Hong Kong. We are grateful for an equipment grant (UDF) from the University of Hong Kong for the 600 MHz NMR facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Xian Huang or Hongzhe Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Li, H., Cai, B. et al. The effect of nitric oxide on metal release from metallothionein-3: gradual unfolding of the protein. J Biol Inorg Chem 13, 411–419 (2008). https://doi.org/10.1007/s00775-007-0331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0331-x

Keywords

Navigation