JBIC Journal of Biological Inorganic Chemistry

, Volume 13, Issue 2, pp 157–170 | Cite as

Iron–sulfur protein folds, iron–sulfur chemistry, and evolution

Minireview

Abstract

An inventory of unique local protein folds around Fe–S clusters has been derived from the analysis of protein structure databases. Nearly 50 such folds have been identified, and over 90% of them harbor low-potential [2Fe–2S]2+,+ or [4Fe–4S]2+,+ clusters. In contrast, high-potential Fe–S clusters, notwithstanding their structural diversity, occur in only three different protein folds. These observations suggest that the extant population of Fe–S protein folds has to a large extent been shaped in the reducing iron- and sulfur-rich environment that is believed to have predominated on this planet until approximately two billion years ago. High-potential active sites are then surmised to be rarer because they emerged later, in a more oxidizing biosphere, in conditions where iron and sulfide had become poorly available, Fe–S clusters were less stable, and in addition faced competition from heme iron and copper active sites. Among the low-potential Fe–S active sites, protein folds hosting [4Fe–4S]2+,+ clusters outnumber those with [2Fe–2S]2+,+ ones by a factor of 3 at least. This is in keeping with the higher chemical stability and versatility of the tetranuclear clusters, compared with the binuclear ones. It is therefore suggested that, at least while novel Fe–S sites are evolving within proteins, the intrinsic chemical stability of the inorganic moiety may be more important than the stabilizing effect of the polypeptide chain. The discovery rate of novel Fe–S-containing protein folds underwent a sharp increase around 1995, and has remained stable to this day. The current trend suggests that the mapping of the Fe–S fold space is not near completion, in agreement with predictions made for protein folds in general. Altogether, the data collected and analyzed here suggest that the extant structural landscape of Fe–S proteins has been shaped to a large extent by primeval geochemical conditions on one hand, and iron–sulfur chemistry on the other.

Keywords

Ferredoxin Rubredoxin Hydrogenase Iron–sulfur Bioenergetics Evolution 

Abbreviations

CoA

coenzyme A

EPR

electron paramagnetic resonance

Fd

ferredoxin

FNR

fumarate nitrate regulator

GABA

γ-aminobutyric acid

HiPIP

high potential iron protein

PDB

Protein Data Bank

PRPP

phosphoribosylpyrophosphate

Rd

rubredoxin

tRNA

transfer RNA

References

  1. 1.
    Beinert H, Sands RH (1960) Biochem Biophys Res Commun 3:41–46CrossRefGoogle Scholar
  2. 2.
    Mortenson LE, Valentine RC, Carnahan JE (1962) Biochem Biophys Res Commun 7:448–452PubMedCrossRefGoogle Scholar
  3. 3.
    Tagawa K, Arnon DI (1962) Nature 195:537–543PubMedCrossRefGoogle Scholar
  4. 4.
    Malkin R, Rabinowitz JC (1966) Biochem Biophys Res Commun 23:822–827PubMedCrossRefGoogle Scholar
  5. 5.
    Beinert H, Holm RH, Münck E (1997) Science 277:653–659PubMedCrossRefGoogle Scholar
  6. 6.
    Rao PV, Holm RH (2004) Chem Rev 104:527–559CrossRefGoogle Scholar
  7. 7.
    Beinert H, Meyer J, Lill R (2004) In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry, vol 2. Elsevier, Amsterdam, pp 482–489Google Scholar
  8. 8.
    Rees DC (2002) Annu Rev Biochem 71:221–246PubMedCrossRefGoogle Scholar
  9. 9.
    Volbeda A, Fontecilla-Camps JC (2005) Dalton Trans 3443–3450Google Scholar
  10. 10.
    Moulis JM, Davasse V, Golinelli MP, Meyer J, Quinkal I (1996) J Biol Inorg Chem 1:2–14CrossRefGoogle Scholar
  11. 11.
    Sazanov LA, Hinchliffe P (2006) Science 311:1430–1436PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson MK (1998) Curr Opin Chem Biol 2:173–181PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson MK, Smith AD (2005) In: King RB (ed) Encyclopaedia of inorganic chemistry, vol 4. Wiley, Chichester, pp 2589–2619Google Scholar
  14. 14.
    Johnson DC, Dean DR, Smith AD, Johnson MK (2004) Annu Rev Biochem 74:247–281CrossRefGoogle Scholar
  15. 15.
    Mitou G, Higgins C, Wittung-Stafshede P, Conover RC, Smith AD, Johnson MK, Gaillard J, Stubna A, Münck E, Meyer J (2003) Biochemistry 42:1354–1364PubMedCrossRefGoogle Scholar
  16. 16.
    Eady RR, Smith BE, Cook KA, Postgate JR (1972) Biochem J 128:655–675PubMedGoogle Scholar
  17. 17.
    You JF, Papaefthymiou GC, Holm RH (1992) J Am Chem Soc 114:2697–2710CrossRefGoogle Scholar
  18. 18.
    Long JR, Holm RH (1994) J Am Chem Soc 116:9987–10002CrossRefGoogle Scholar
  19. 19.
    Wächtershäuser G (2006) Philos Trans R Soc Lond Ser B 361:1787–1808CrossRefGoogle Scholar
  20. 20.
    Russell MJ (2007) Acta Biotheor (in press). doi:10.1007/s10441-007-9018-5
  21. 21.
    Kirschvink JL (2005) Engineering & Science 4:10–20Google Scholar
  22. 22.
    Eck RV, Dayhoff MO (1966) Science 152:363–366PubMedCrossRefGoogle Scholar
  23. 23.
    Adman ET, Sieker LC, Jensen LH (1973) J Biol Chem 248:3987–3996PubMedGoogle Scholar
  24. 24.
    Sieker LC, Adman ET (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 574–592Google Scholar
  25. 25.
    Orengo CA, Thornton JM (2005) Annu Rev Biochem 74:867–900PubMedCrossRefGoogle Scholar
  26. 26.
    Herskovitz T, Averill BA, Holm RH, Ibers JA, Phillips WD, Weiher JF (1972) Proc Natl Acad Sci USA 69:2437–2441PubMedCrossRefGoogle Scholar
  27. 27.
    Moulis JM, Sieker LC, Wilson KS, Dauter Z (1996) Protein Sci 5:1765–1775PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson MK, Duderstadt RE, Duin EC (1999) Adv Inorg Chem 47:1–82Google Scholar
  29. 29.
    Beinert H, Kennedy MC, Stout CD (1996) Chem Rev 96:2335–2373PubMedCrossRefGoogle Scholar
  30. 30.
    Dauter Z, Wilson KS, Sieker LC, Meyer J, Moulis J-M (1997) Biochemistry 36:16065–16073PubMedCrossRefGoogle Scholar
  31. 31.
    Darimont B, Sterner R (1994) EMBO J 13:1772–1781PubMedGoogle Scholar
  32. 32.
    Brochier C, Philippe H (2002) Nature 417:244PubMedCrossRefGoogle Scholar
  33. 33.
    Skophammer RG, Servin JA, Herbold CW, Lake JA (2007) Mol Biol Evol 24:1761–1768PubMedCrossRefGoogle Scholar
  34. 34.
    Bartsch RG (1978) Methods Enzymol 53:329–340PubMedCrossRefGoogle Scholar
  35. 35.
    Ciurli S, Musiani F (2005) Photosynth Res 85:115–131PubMedCrossRefGoogle Scholar
  36. 36.
    Liu L, Nogi T, Kobayashi M, Nozawa T, Miki K (2002) Acta Cryst D58:1085–1091Google Scholar
  37. 37.
    Carter CW Jr (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 602–609Google Scholar
  38. 38.
    Bertini I, Luchinat C, Provenzani A, Rosato A, Vasos PR (2002) Proteins 46:110–127PubMedCrossRefGoogle Scholar
  39. 39.
    Tsukihara T, Fukuyama K, Nakamura M, Katsube Y, Tanaka N, Kakudo M, Wada K, Hase T, Matsubara H (1981) J Biochem (Tokyo) 90:1763–1773Google Scholar
  40. 40.
    Grinberg AV, Hannemann F, Schiffler B, Müller J, Heinemann U, Bernhardt R (2000) Proteins 40:590–612PubMedCrossRefGoogle Scholar
  41. 41.
    Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Biochemistry 40:11007–11012PubMedCrossRefGoogle Scholar
  42. 42.
    Hugo N, Meyer C, Armengaud J, Gaillard J, Timmis KN, Jouanneau Y (2000) J Bacteriol 182:5580–5585PubMedCrossRefGoogle Scholar
  43. 43.
    Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Nat Struct Biol 3:452–458PubMedCrossRefGoogle Scholar
  44. 44.
    Zanetti G, Binda C, Aliverti A (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, Wiley, Chichester, pp 532–542Google Scholar
  45. 45.
    Morales R, Charon MH, Hudry-Clergeon G, Pétillot Y, Nørager S, Medina M, Frey M (1999) Biochemistry 38:15764–15773PubMedCrossRefGoogle Scholar
  46. 46.
    Link TA (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 518–531Google Scholar
  47. 47.
    Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Schoepp-Cothenet B, Baymann F, Nitschke W (2006) Mol Biol Evol 23:1180–1191PubMedCrossRefGoogle Scholar
  48. 48.
    Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–579PubMedCrossRefGoogle Scholar
  49. 49.
    Colbert CL, Couture MMJ, Eltis LD, Bolin JT (2000) Structure 8:1267–1278PubMedCrossRefGoogle Scholar
  50. 50.
    Shethna YI, Wilson PW, Hansen RE, Beinert H (1964) Proc Natl Acad Sci USA 52:1263–1271PubMedCrossRefGoogle Scholar
  51. 51.
    Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC (2000) J Mol Biol 300:587–595PubMedCrossRefGoogle Scholar
  52. 52.
    Meyer J (2001) FEBS Lett 509:1–5PubMedCrossRefGoogle Scholar
  53. 53.
    Vignais PM, Billoud B, Meyer J (2001) FEMS Microbiol Rev 25:455–501PubMedGoogle Scholar
  54. 54.
    Herriott JR, Sieker LC, Jensen LH (1970) J Mol Biol 50:391–406PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer J, Moulis JM (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 505–517Google Scholar
  56. 56.
    Archer M, Huber R, Tavares P, Moura I, Moura JJG, Carrondo MA, Sieker LC, LeGall J, Romão MJ (1995) J Mol Biol 251:690–702PubMedCrossRefGoogle Scholar
  57. 57.
    deMaré F, Kurtz DM Jr, Nordlund P (1996) Nat Struct Biol 3:539–546PubMedCrossRefGoogle Scholar
  58. 58.
    Yeh AP, Hu Y, Jenney FE Jr, Adams MWW, Rees DC (2000) Biochemistry 39:2499–2508PubMedCrossRefGoogle Scholar
  59. 59.
    Logan DT, Mulliez E, Larsson KM, Bodevin S, Atta M, Garnaud PE, Sjöberg BM, Fontecave M (2003) Proc Natl Acad Sci USA 100:3826–3831PubMedCrossRefGoogle Scholar
  60. 60.
    Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, Pieters J, Steinmetz MO (2007) Proc Natl Acad Sci USA 104:12151–12156PubMedCrossRefGoogle Scholar
  61. 61.
    Meyer J, Gagnon J, Gaillard J, Lutz M, Achim C, Münck E, Pétillot Y, Colangelo CM, Scott RA (1997) Biochemistry 36:13374–13380PubMedCrossRefGoogle Scholar
  62. 62.
    Iwasaki T, Kounosu A, Tao Y, Li Z, Shokes JE, Cosper NJ, Imai T, Urushiyama A, Scott RA (2005) J Biol Chem 280:9129–9134PubMedCrossRefGoogle Scholar
  63. 63.
    Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J (1996) Proc Natl Acad Sci USA 93:8836–8840PubMedCrossRefGoogle Scholar
  64. 64.
    Maher M, Cross M, Wilce MCJ, Guss JM, Wedd AG (2004) Acta Crystallogr Sect D 60:298–303CrossRefGoogle Scholar
  65. 65.
    Meyer J (2004) FEBS Lett 570:1–6PubMedCrossRefGoogle Scholar
  66. 66.
    Meyer J (2007) Cell Mol Life Sci 64:1063–1084PubMedCrossRefGoogle Scholar
  67. 67.
    Leiros HKS, McSweeney SM (2007) J Struct Biol 159:92–102PubMedCrossRefGoogle Scholar
  68. 68.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  69. 69.
    Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) Chembiochem 6:1536–1549PubMedCrossRefGoogle Scholar
  70. 70.
    Sayle RA, Milner-White EJ (1995) Trends Biochem Sci 20:374–376PubMedCrossRefGoogle Scholar
  71. 71.
    Andrade SLA, Cruz F, Drennan CL, Ramakrishnan V, Rees DC, Ferry JG, Einsle O (2005) J Bacteriol 187:3848–3854PubMedCrossRefGoogle Scholar
  72. 72.
    Dai S, Friemann R, Glauser DA, Bourquin F, Manieri W, Schürmann P, Eklund H (2007) Nature 448:92–98PubMedCrossRefGoogle Scholar
  73. 73.
    Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858PubMedCrossRefGoogle Scholar
  74. 74.
    Holm L, Sander C (1993) J Mol Biol 233:123–138PubMedCrossRefGoogle Scholar
  75. 75.
    Lancaster CRD, Kröger A, Auer M, Michel H (1999) Nature 402:377–385PubMedCrossRefGoogle Scholar
  76. 76.
    Grabowski M, Joachimiak A, Otwinowski Z, Minor W (2007) Curr Opin Struct Biol 17:347–353PubMedCrossRefGoogle Scholar
  77. 77.
    Caetano-Anolles G, Kim HS, Mittenthal JE (2007) Proc Natl Acad Sci USA 104:9358–9363PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J (2006) Proc Natl Acad Sci USA 103:2605–2610PubMedCrossRefGoogle Scholar
  79. 79.
    Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) PLoS Biol 5:e16PubMedCrossRefGoogle Scholar
  80. 80.
    Layer G, Heinz DW, Jahn D, Schubert W-D (2004) Curr Opin Chem Biol 8:468–476PubMedCrossRefGoogle Scholar
  81. 81.
    Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, Nakai M (2006) J Mol Biol 360:117–132PubMedCrossRefGoogle Scholar
  82. 82.
    Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Science 303:76–79PubMedCrossRefGoogle Scholar
  83. 83.
    Collet JF, Peisach D, Bardwell JC, Xu Z (2005) Protein Sci 14:1863–1869PubMedCrossRefGoogle Scholar
  84. 84.
    Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN, Nechushtai R, Dixon JE, Jennings PA (2007) Proc Natl Acad Sci USA 104:14342–14347PubMedCrossRefGoogle Scholar
  85. 85.
    Demple B (2002) Mol Cell Biochem 234/235:11–18CrossRefGoogle Scholar
  86. 86.
    Kiley PJ, Beinert H (2003) Curr Opin Microbiol 6:181–185PubMedCrossRefGoogle Scholar
  87. 87.
    Dupuy J, Volbeda A, Carpentier P, Darnault C, Moulis J-M, Fontecilla-Camps JC (2006) Structure 14:129–139PubMedCrossRefGoogle Scholar
  88. 88.
    Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz C (2007) Science 314:1903–1908CrossRefGoogle Scholar
  89. 89.
    Yeh AP, Ambroggio XI, Andrade SLA, Einsle O, Chatelet C, Meyer J, Rees DC (2002) J Biol Chem 277:34499–34507PubMedCrossRefGoogle Scholar
  90. 90.
    Anderson GL, Howard JB (1984) Biochemistry 23:2118–2122PubMedCrossRefGoogle Scholar
  91. 91.
    Sen S, Igarashi R, Smith A, Johnson MK, Seefeldt LC, Peters JW (2004) Biochemistry 43:1787–1797PubMedCrossRefGoogle Scholar
  92. 92.
    Mayerle JJ, Frankel RB, Holm RH, Ibers JA, Phillips WD, Weiher JF (1973) Proc Natl Acad Sci USA 70:2429–2433PubMedCrossRefGoogle Scholar
  93. 93.
    Müller A, Schladerbeck NH (1986) Naturwissenschaften 73:S669CrossRefGoogle Scholar
  94. 94.
    Müller A, Schladerbeck NH (1985) Chimia 39:23–24Google Scholar
  95. 95.
    Hagen KS, Reynolds JG, Holm RH (1981) J Am Chem Soc 103:4054–4063CrossRefGoogle Scholar
  96. 96.
    Stack TDP, Holm RH (1988) J Am Chem Soc 110:2484–2494CrossRefGoogle Scholar
  97. 97.
    Weigel JA, Holm RH (1991) J Am Chem Soc 113:4184–4191CrossRefGoogle Scholar
  98. 98.
    Zhou J, Hu Z, Münck E, Holm RH (1996) J Am Chem Soc 118:1966–1980CrossRefGoogle Scholar
  99. 99.
    Meyer J, Fujinaga J, Gaillard J, Lutz M (1994) Biochemistry 33:13642–13650PubMedCrossRefGoogle Scholar
  100. 100.
    Broach RB, Jarrett JT (2006) Biochemistry 45:14166–14174PubMedCrossRefGoogle Scholar
  101. 101.
    Delaye L, Becerra A, Lazcano A (2005) Orig Life Evol Biosph 35:537–554PubMedCrossRefGoogle Scholar
  102. 102.
    Williams RJP (2007) Dalton Trans 991–1001Google Scholar
  103. 103.
    Burroughs AM, Balaji S, Iyer LM, Aravind L (2007) Biol Direct 2:18PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2007

Authors and Affiliations

  1. 1.Laboratoire de Chimie et Biologie des MétauxIRTSV, Commissariat à l’Energie Atomique/CNRS/Université Joseph FourierGrenobleFrance

Personalised recommendations