JBIC Journal of Biological Inorganic Chemistry

, Volume 12, Issue 8, pp 1107–1117 | Cite as

Ruthenium anticancer drugs and proteins: a study of the interactions of the ruthenium(III) complex imidazolium trans-[tetrachloro(dimethyl sulfoxide)(imidazole)ruthenate(III)] with hen egg white lysozyme and horse heart cytochrome c

  • Angela Casini
  • Guido Mastrobuoni
  • Mattia Terenghi
  • Chiara Gabbiani
  • Enrico Monzani
  • Gloriano Moneti
  • Luigi Casella
  • Luigi MessoriEmail author
Original Paper


The interactions with protein targets of the ruthenium(III) complex imidazolium trans-[tetrachloro(dimethyl sulfoxide)(imidazole)ruthenate(III)], NAMI-A, an effective anticancer and antimetastatic agent now in clinical trials, deserve great attention as they are believed to be at the basis of the mechanism of action of this innovative molecule. Here, we report on the reactions of NAMI-A with two well-known model proteins, namely, hen egg white lysozyme and horse heart cytochrome c; these reactions were investigated by a variety of physicochemical methods, including optical spectroscopy, 1H NMR and electrospray ionization mass spectrometry. The combined use of the analytical techniques mentioned resulted in a rather exhaustive description of the NAMI-A–protein interactions; in particular, the formation of fairly stable metal–protein adducts was clearly documented and the nature of the resulting protein-bound metallic fragments ascertained in most cases. Notably, greatly different patterns of interaction were found to be operative for NAMI-A toward these two proteins. The biological implications of the present findings are discussed.


Ruthenium metal complexes Cancer Proteins NMR Electrospray ionization mass spectrometry 



CIRCMSB, MIUR, and Ente Cassa di Risparmio di Firenze are gratefully acknowledged for financial support. We thank AIRC for a grant to A.C. Scientific discussion with Enzo Alessio on the main aspects of this study turned out to be very illuminating.


  1. 1.
    Alessio E, Mestroni G, Bergamo A, Sava G (2004) Curr Top Med Chem 4(15):1525–1535PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel A, Siegel H (2004) Metal ions in biological systems, vol 42. Dekker, New YorkGoogle Scholar
  3. 3.
    Sava G, Gagliardi R, Bergamo A, Alessio E, Mestroni G (1999) Anticancer Res 19(2A):969–972PubMedGoogle Scholar
  4. 4.
    Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) Clin Cancer Res 10(11):3717–3727PubMedCrossRefGoogle Scholar
  5. 5.
    Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891–904PubMedCrossRefGoogle Scholar
  6. 6.
    Dittrich C, Scheulen ME, Jaehde U, Kynast B, Gneist M, Richly H, Schaad S, Arion VB, Keppler BK (2005) Proc Am Assoc Cancer Res 46:P472Google Scholar
  7. 7.
    Dyson PJ Sava G (2006) Dalton Trans 1929–1933Google Scholar
  8. 8.
    Frausin F, Scarcia V, Cocchietto M, Furlani A, Serli B, Alessio E, Sava G (2005) J Pharmacol Exp Ther 3(1):227–233Google Scholar
  9. 9.
    Lippert B (1999) Cisplatin, chemistry and biochemistry of a leading anticancer drug. Wiley, WeinheimGoogle Scholar
  10. 10.
    Reedijk J (1996) Chem Commun 801–806Google Scholar
  11. 11.
    Roberts JD, Peroutka J, Farrell N (1999) J Inorg Biochem 77:51–57PubMedCrossRefGoogle Scholar
  12. 12.
    Zorzet S, Bergamo A, Cocchietto M, Sorc A, Gava B, Alessio E, Iengo E, Sava G (2000) J Pharmacol Exp Ther 295(3):927–933PubMedGoogle Scholar
  13. 13.
    Bergamo A, Sava G (2007) Dalton Trans 13:1267–1272PubMedCrossRefGoogle Scholar
  14. 14.
    Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Eur J Biochem 269(23):5861–5870PubMedCrossRefGoogle Scholar
  15. 15.
    Sanna B, Debidda M, Pintus G, Tadolini B, Posadino AM, Bennardini F, Sava G, Ventura C (2002) Arch Biochem Biophys 403(2):209–218PubMedCrossRefGoogle Scholar
  16. 16.
    Bergamo A, Messori L, Piccioli F, Cocchietto M, Sava G (2003) Invest New Drugs 21(4):401–411PubMedCrossRefGoogle Scholar
  17. 17.
    Messori L, Orioli P, Vullo D, Alessio E, Iengo E (2000) Eur J Biochem 267(4):1206–1213PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang X, Wang X (2004) Annu Rev Biochem 73:87–106PubMedCrossRefGoogle Scholar
  19. 19.
    McKenzie HA, White FH (1991) Adv Protein Chem 41:173–315PubMedCrossRefGoogle Scholar
  20. 20.
    Casini A, Mastrobuoni G, Temperini C, Gabbiani C, Francese S, Moneti G, Supuran CT, Scozzafava A, Messori L (2007) Chem Commun 2:156–158CrossRefGoogle Scholar
  21. 21.
    Casini A, Gabbiani C, Mastrobuoni G, Messori L, Moneti G, Pieraccini G (2006) Chem Med Chem 1(4):413–417PubMedGoogle Scholar
  22. 22.
    Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P (1997) Biochemistry 36(32):9867–9877PubMedCrossRefGoogle Scholar
  23. 23.
    Mestroni G, Alessio E, Sava G (1998) Int Patent WO 98/00431Google Scholar
  24. 24.
    Bacac M, Hotze AC, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) J Inorg Biochem 98(2):402–412PubMedCrossRefGoogle Scholar
  25. 25.
    Bouma M, Nuijen B, Jansen MT, Sava G, Flaibani A, Bult A, Beijnen JH (2002) Int J Pharm 248(1–2):239–246PubMedCrossRefGoogle Scholar
  26. 26.
    Mestroni G, Alessio E, Sava G, Pacor S, Coluccia M, Boccarelli A (1994) Metal Based Drugs 1:41–63CrossRefPubMedGoogle Scholar
  27. 27.
    Ravera M, Baracco S, Cassino C, Zanello P, Osella D (2004) Dalton Trans 15:2347–2351PubMedCrossRefGoogle Scholar
  28. 28.
    Groessl M, Reisner E, Hartinger CG, Eichinger R, Semenova O, Timerbaev AR, Jakupec MA, Arion VB, Keppler BK (2007) J Med Chem 50:2185–2193PubMedCrossRefGoogle Scholar
  29. 29.
    Brindell M, Piotrowska D, Shoukry AA, Stochel G, van Eldik R (2007) J Biol Inorg Chem (in press)Google Scholar
  30. 30.
    Chen J, Chen L, Liao S, Zheng K, Ji L (2007) J Phys Chem B 111:7862–7869PubMedCrossRefGoogle Scholar
  31. 31.
    Retailleau P, Ducruix A, Ries-Kautt M (2002) Acta Crystallogr Sect D 58:1576–1581CrossRefGoogle Scholar
  32. 32.
    Norne JE, Lilja H, Lindman B, Einarsson R, Zeppezauer M (1975) Eur J Biochem 59(2):463–473PubMedCrossRefGoogle Scholar
  33. 33.
    Adar F (1978) In: The porphyrins, vol 3. Physical chemistry A. Academic, New York, pp 167–209Google Scholar
  34. 34.
    Satterlee JD, Moench S (1987) Biophys J 52:101–107PubMedCrossRefGoogle Scholar
  35. 35.
    Casini A, Mastrobuoni G, Ang WH, Gabbiani C, Pieraccini G, Moneti G, Dyson PJ, Messori L (2007) Chem Med Chem 2(5):631–635PubMedGoogle Scholar
  36. 36.
    Calderone V, Casini A, Mangani S, Messori L, Orioli PL (2006) Angew Chem Int Ed Engl 45(8):1267–1269PubMedCrossRefGoogle Scholar
  37. 37.
    Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Chem Rev 106(6):2224–2248PubMedCrossRefGoogle Scholar
  38. 38.
    Andersson T, Thulin E, Forsén S (1979) Biochemistry 18(12):2487–2493PubMedCrossRefGoogle Scholar
  39. 39.
    Gourion-Arsiquaud S, Chevance S, Bouyer P, Garnier L, Montillet JL, Bondon A, Berthomieu C (2005) Biochemistry 44:8652–8663PubMedCrossRefGoogle Scholar
  40. 40.
    Yocom KM, Shelton JB, Shelton JR, Schroeder WA, Worosila G, Isied SS, Bordignon E, Gray HB (1982) Proc Natl Acad Sci USA 79(22):7052–7055PubMedCrossRefGoogle Scholar
  41. 41.
    Yocom KM, Winkler JR, Nocera DG, Bordignon E, Gray HB (1983) Chem Scr 21:29–33Google Scholar
  42. 42.
    Temperini C, Messori L, Orioli P, Ughetto G (2004) Crystal structure of the ruthenium complex NAMI-A and the oligonucleotide d(CGCGAATTCGCG) poster presentation at the 23rd Congresso AIC, RomeGoogle Scholar

Copyright information

© SBIC 2007

Authors and Affiliations

  • Angela Casini
    • 1
  • Guido Mastrobuoni
    • 2
  • Mattia Terenghi
    • 3
  • Chiara Gabbiani
    • 1
  • Enrico Monzani
    • 3
  • Gloriano Moneti
    • 2
  • Luigi Casella
    • 3
  • Luigi Messori
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly
  2. 2.Mass Spectrometry CenterUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Department of ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations