Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis

  • Grigorios A. Papadakos
  • Horacio Nastri
  • Paul Riggs
  • Cynthia M. Dupureur
Original Paper

Abstract

The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 Å from both metal ions in the enzyme–substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H–15N heteronuclear single quantum coherence spectra of enzyme–Ca(II) and enzyme–Ca(II)–DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

Keywords

Nuclease Enzyme mechanism Metal ions DNA 

Abbrevations

HEPES

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

HSQC

Heteronuclear single quantum coherence

Tris

Tris(hydroxymethyl)aminomethane

TROSY

Transverse relaxation optimized spectroscopy

WT

Wild type

Notes

Acknowledgements

Many thanks to Mike Henzl at the University of Missouri-Columbia for use of his calorimeter and related advice. This work was supported by the NIH GM67596.

References

  1. 1.
    Pingoud A, Fuxreiter M, Pingoud V, Wende W (2005) Cell Mol Life Sci 62:685–707PubMedCrossRefGoogle Scholar
  2. 2.
    Galburt EA, Stoddard BL (2002) Biochemistry 41:13851–13860PubMedCrossRefGoogle Scholar
  3. 3.
    Rice PA, Baker TA (2001) Nat Struct Biol 8:302–307CrossRefGoogle Scholar
  4. 4.
    Steitz TA, Steitz JA (1993) Proc Natl Acad Sci USA 90:6498–6502PubMedCrossRefGoogle Scholar
  5. 5.
    Horton JR, Cheng X (2000) J Mol Biol 300:1049–1056PubMedCrossRefGoogle Scholar
  6. 6.
    Viadiu H, Aggarwal AK (1998) Nat Struct Biol 5:910–916PubMedCrossRefGoogle Scholar
  7. 7.
    Horton NC, Perona JJ (2004) Biochemistry 43:6841–6857PubMedCrossRefGoogle Scholar
  8. 8.
    Conlan LH, Dupureur CM (2002) Biochemistry 41:14848–14855PubMedCrossRefGoogle Scholar
  9. 9.
    Han H, Rifkind JM, Mildvan AS (1991) Biochemistry 30:11104–11108PubMedCrossRefGoogle Scholar
  10. 10.
    Groll DH, Jeltsch A, Selent U, Pingoud A (1997) Biochemistry 36:11389–11401PubMedCrossRefGoogle Scholar
  11. 11.
    Spyridaki A, Matzen C, Lanio T, Jeltsch A, Simoncsits A, Athanasiadis A, Scheuring-Vanamee E, Kokkinidis M, Pingoud A (2003) J Mol Biol 331:395–406PubMedCrossRefGoogle Scholar
  12. 12.
    José TJ, Conlan LH, Dupureur CM (1999) J Biol Inorg Chem 4:814–823PubMedCrossRefGoogle Scholar
  13. 13.
    Pingoud A, Jeltsch A (1997) Eur J Biochem 246:1–22PubMedCrossRefGoogle Scholar
  14. 14.
    Dupureur CM, Dominguez MA (2001) Biochemistry 40:387–394PubMedCrossRefGoogle Scholar
  15. 15.
    Danielson MA, Falke JJ (1996) Annu Rev Biophys Struct 25:163–195CrossRefGoogle Scholar
  16. 16.
    Holmquist B (1988) Methods Enzymol 158:6–12PubMedCrossRefGoogle Scholar
  17. 17.
    Bowen LM, Dupureur CM (2003) Biochemistry 42:12643–12653PubMedCrossRefGoogle Scholar
  18. 18.
    Dupureur CM, Hallman LM (1999) Eur J Biochem 261:261–268PubMedCrossRefGoogle Scholar
  19. 19.
    Wagner R, Podesta FE, Gonzalez DH, Andreo CS (1988) Eur J Biochem 172:561–568CrossRefGoogle Scholar
  20. 20.
    Bowen LM, Muller G, Riehl JP, Dupureur CM (2004) Biochemistry 43:15286–15295PubMedCrossRefGoogle Scholar
  21. 21.
    Conlan LH, Dupureur CM (2002) Biochemistry 41:1335–1342PubMedCrossRefGoogle Scholar
  22. 22.
    Reid S, Parry D, Liu H-H, Connolly BA (2001) Biochemistry 40:2484–2494PubMedCrossRefGoogle Scholar
  23. 23.
    Wyman J, Gill SJ (1990) Binding and linkage: functional chemistry of biological macromolecules. University Science Books, Mill ValleyGoogle Scholar
  24. 24.
    Dupureur CM (2005) Biochemistry 45:5065–5074CrossRefGoogle Scholar
  25. 25.
    Henzl MT, Larson JD, Agah S (2003) Anal Biochem 319:216–233PubMedCrossRefGoogle Scholar
  26. 26.
    Cowan JA (1997) J Biol Inorg Chem 2:168–176CrossRefGoogle Scholar
  27. 27.
    Hadden JM, Declais AC, Phillips SE, Lilley DM (2002) EMBO J 21:3505–3515PubMedCrossRefGoogle Scholar
  28. 28.
    Dupureur CM, Conlan LH (2000) Biochemistry 39:10921–10927PubMedCrossRefGoogle Scholar
  29. 29.
    Stahl F, Wende W, Jeltsch A, Pingoud A (1996) Proc Natl Acad Sci USA 93:6175–6180PubMedCrossRefGoogle Scholar
  30. 30.
    Simoncsits A, Tjornhammar M-L, Rasko T, Kiss A, Pongor S (2001) J Mol Biol 309:89–97PubMedCrossRefGoogle Scholar
  31. 31.
    Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson DM 3rd, Rupp B (2001) J Mol Biol 307:1023–1034PubMedCrossRefGoogle Scholar
  32. 32.
    Deibert M, Grazulis S, Janulaitis A, Siksnys V, Huber R (1999) EMBO J 18:5805–5816PubMedCrossRefGoogle Scholar
  33. 33.
    Horton NC, Perona JJ (1998) J Biol Chem 273:21721–21729PubMedCrossRefGoogle Scholar
  34. 34.
    Bozic D, Grazulis A, Siksnys V, Huber R (1996) J Mol Biol 255:176–186PubMedCrossRefGoogle Scholar
  35. 35.
    Huai Q, Colandene JD, Topal M, Ke H (2001) Nat Struct Biol 8:665–669PubMedCrossRefGoogle Scholar
  36. 36.
    Hadden JM, Convery MA, Declais AC, Lilley DM, Phillips SE (2001) Nat Struct Biol 8:62–67PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2007

Authors and Affiliations

  • Grigorios A. Papadakos
    • 1
  • Horacio Nastri
    • 2
    • 3
  • Paul Riggs
    • 2
  • Cynthia M. Dupureur
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Missouri-St LouisSt LouisUSA
  2. 2.New England BiolabsIpswichUSA
  3. 3.EMD Lexigen Research CenterBillericaUSA

Personalised recommendations