N-terminal iron-mediated self-cleavage of human frataxin: regulation of iron binding and complex formation with target proteins

  • Taejin Yoon
  • Eric Dizin
  • J. A. CowanEmail author
Original Paper


Frataxin is an iron-binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron–sulfur cluster and heme biosynthesis. Mitochondrial processing peptidase (MPP) yields a form of human frataxin corresponding to residues 56–210. However, structural and functional studies have focused on a core structure that results from an ill-defined cleavage event at the N-terminus. Herein we show that the N-terminus of MPP-processed frataxin shows a unique high-affinity iron site and that this iron center appears to mediate a self-cleavage reaction. Moreover, the N-terminus appears to block previously defined iron-binding sites located on the carboxylate-rich surface defined by the helix (α1) and the β-sheet (β1), most likely through electrostatic contact with the carboxylate-rich surface on the core protein, as well as inhibiting iron-promoted binding of the iron–sulfur cluster assembly scaffold partner protein, ISU. The physiological significance of iron-mediated release of the N-terminal residues from this anionic surface is discussed.


Frataxin Friedreich’s ataxia Self-cleavage Iron binding ISU 



This work was supported by a grant the National Science Foundation, CHE-0111161.


  1. 1.
    Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Science 276:1709–1712PubMedCrossRefGoogle Scholar
  2. 2.
    Cavadini P, Gellera C, Patel PI, Isaya G (2000) Hum Mol Genet 9:2523–2530PubMedCrossRefGoogle Scholar
  3. 3.
    Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Nat Genet 27:181–186PubMedCrossRefGoogle Scholar
  4. 4.
    Foury F, Cazzalini O (1997) FEBS Lett 411:373–377PubMedCrossRefGoogle Scholar
  5. 5.
    Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M (1997) Nat Genet 16:345–351PubMedCrossRefGoogle Scholar
  6. 6.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Science 271:1423–1427PubMedCrossRefGoogle Scholar
  7. 7.
    Patel P, Isaya G (2001) Am J Hum Genet 69:15–24PubMedCrossRefGoogle Scholar
  8. 8.
    Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, Cortopassi G (1999) Hum Mol Genet 8:425–430PubMedCrossRefGoogle Scholar
  9. 9.
    Yoon T, Cowan JA (2003) J Am Chem Soc 125:6078–6084PubMedCrossRefGoogle Scholar
  10. 10.
    Yoon T, Cowan JA (2004) J Biol Chem 279:25943–25946PubMedCrossRefGoogle Scholar
  11. 11.
    Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Science 305:242–245PubMedCrossRefGoogle Scholar
  12. 12.
    Park S, Gakh O, O’Neill HA, Mangravita A, Nichol H, Ferreira GC, Isaya G (2003) J Biol Chem 278:31340–31351PubMedCrossRefGoogle Scholar
  13. 13.
    Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002) Hum Mol Genet 11:2025–2036PubMedCrossRefGoogle Scholar
  14. 14.
    Gerber J, Muhlenhoff U, Lill R (2003) EMBO Rep 4:906–911PubMedCrossRefGoogle Scholar
  15. 15.
    Lesuisse E, Santos R, Matzanke BF, Knight SA, Camadro JM, Dancis A (2003) Hum Mol Genet 12:879–889PubMedCrossRefGoogle Scholar
  16. 16.
    Ramazzotti A, Vanmansart V, Foury F (2004) FEBS Lett 557:215–220PubMedCrossRefGoogle Scholar
  17. 17.
    Cavadini P, Adamec J, Taroni F, Gakh O, Isaya G (2000) J Biol Chem 275:41469–41475PubMedCrossRefGoogle Scholar
  18. 18.
    Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, Pastore A (2000) Structure 8:695–707PubMedCrossRefGoogle Scholar
  19. 19.
    Dhe-Paganon S, Shigeta R, Chi Y, Ristow M, Shoelson SE (2000) J Biol Chem 275:30753–30756PubMedCrossRefGoogle Scholar
  20. 20.
    Nair M, Adinolfi S, Pastore C, Kelly G, Temussi P, Pastore A (2004) Structure 12:2037–2048PubMedCrossRefGoogle Scholar
  21. 21.
    He Y, Alam S, Proteasa S, Zhang Y, Lesuisse E, Dancis A, Stemmler T (2004) Biochemistry 43:16254–16262PubMedCrossRefGoogle Scholar
  22. 22.
    Cavadini P, O’Neill HA, Benada O, Isaya G (2002) Hum Mol Genet 11:217–227PubMedCrossRefGoogle Scholar
  23. 23.
    Ibrahim HR, Haraguchi T, Aoki T (2006) Biochim Biophys Acta 1760:347–355PubMedGoogle Scholar
  24. 24.
    Jeffery CJ (2003) Trends Genet 19:415–417PubMedCrossRefGoogle Scholar
  25. 25.
    Perler FB (1997) Curr Opin Chem Biol 1997:292–299CrossRefGoogle Scholar
  26. 26.
    O’Neill H, Gakh O, Isaya G (2005) J Mol Biol 345:433–439PubMedCrossRefGoogle Scholar
  27. 27.
    Petrat F, de Groot H, Rauen U (2001) Biochem J 356:61–69PubMedCrossRefGoogle Scholar
  28. 28.
    O’Neill H, Gakh O, Park S, Cui J, Mooney S, Sampson M, Ferreira G, Isaya G (2005) Biochemistry 44:537–545PubMedCrossRefGoogle Scholar
  29. 29.
    Aloria K, Schilke B, Andrew A, Craig EA (2004) EMBO Rep 5:1096–1101PubMedCrossRefGoogle Scholar
  30. 30.
    Bou-Abdallah F, Adinolfi S, Pastore A, Laue TM, Chasteen ND (2004) J Mol Biol 341:605–615PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2007

Authors and Affiliations

  1. 1.Evans Laboratory of ChemistryOhio State UniversityColumbusUSA

Personalised recommendations