JBIC Journal of Biological Inorganic Chemistry

, Volume 12, Issue 2, pp 204–211 | Cite as

Investigations of differences in iron oxidation state inside single neurons from substantia nigra of Parkinson’s disease and control patients using the micro-XANES technique

  • Joanna ChwiejEmail author
  • Dariusz Adamek
  • Magdalena Szczerbowska-Boruchowska
  • Anna Krygowska-Wajs
  • Slawomir Wojcik
  • Gerald Falkenberg
  • Anna Manka
  • Marek Lankosz
Original Paper


X-ray absorption near edge structure spectroscopy was applied in order to investigate differences in iron chemical state between the nerve cells of substantia nigra (SN) representing Parkinson’s disease (PD) and those of control cases. Autopsy samples were cut using a cryotome, and were not fixed and not embedded in paraffin. The comparison of the absorption spectra near the iron K-edge measured in melanized neurons from SN of PD and control samples did not show significant differences in iron oxidation state. Measurements of inorganic reference materials containing iron in the second and third oxidation states indicate that most of the iron in all the nerve cell bodies examined was oxidized and occurred as trivalent ferric iron (Fe3+).


Parkinson’s disease Iron oxidation state X-ray absorption near edge structure spectroscopy Single cell 



This work was supported by the Ministry of Education and Science (Warsaw, Poland) and the following grants: Ministry of Education and Science grants 112/E-356/SPB/DESY/P-05/DWM728/2003-2005 and 3T11E01029; IHP-Contract HPRI-CT-1999-00040/2001-00140 of the European Commission; the European Community Research Infrastructure Action under FP6 “Structuring the European Research Area” (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science”); and HASYLAB experimental grant II-02-092.


  1. 1.
    Samii A, Nutt JG, Ransom BR (2004) Lancet 363:1783–1793PubMedCrossRefGoogle Scholar
  2. 2.
    Kaur D, Andersen J (2004) Ageing Res Rev 3:327–343PubMedCrossRefGoogle Scholar
  3. 3.
    Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Biochem Pharmacol 64:1037–1048PubMedCrossRefGoogle Scholar
  4. 4.
    Adams JD, Chang ML, Klaidman L (2001) Curr Med Chem 8:809–814PubMedGoogle Scholar
  5. 5.
    Foley P, Riederer PJ (2000) Neurol 247(Suppl 2):82–94Google Scholar
  6. 6.
    Andersen JK (2004) J Alzheimer Dis 6:47–52Google Scholar
  7. 7.
    Gotz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) Ann N Y Acad Sci 1012:193–208PubMedCrossRefGoogle Scholar
  8. 8.
    Wolozin B, Golts N (2002) Neuroscientist 8:22–32PubMedCrossRefGoogle Scholar
  9. 9.
    Galazka-Friedman J, Bauminger ER, Friedman A (2002) Hyperfine Interact 2:67–271Google Scholar
  10. 10.
    Antonini A, Leenders KL, Meier D, Oertel WH, Boesiger P, Anliker M (1993) Neurology 43:697–700PubMedGoogle Scholar
  11. 11.
    Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, Tampellini D, Riederer P, Gerlach M, Becker G (2005) Mov Disord 20:1278–1285PubMedCrossRefGoogle Scholar
  12. 12.
    Berg D, Hochstrasser H, Schweitzer KJ, Riess O (2006) Neurotox Res 9:1–13PubMedCrossRefGoogle Scholar
  13. 13.
    Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Brain 122:667–673PubMedCrossRefGoogle Scholar
  14. 14.
    Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) J Neural Transm 74:199–205PubMedCrossRefGoogle Scholar
  15. 15.
    Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB (1991) J Neurochem 56:978–982PubMedCrossRefGoogle Scholar
  16. 16.
    Morawski M, Meinecke C, Reinert T, Dorffel AC, Riederer P, Arendt T, Butz T (2005) Nucl Instrum Methods Phys Res Sect B 231:224–228CrossRefGoogle Scholar
  17. 17.
    Friedman A, Bauminger ER, Galazka-Friedman J, Barcikowska M, Suwalski J, Hechel D, Dymecki J, Nowik I (1994) Neurol Neurochir Pol 28:145–155PubMedGoogle Scholar
  18. 18.
    Galazka-Friedman J, Bauminger ER, Friedman A, Barcikowska M, Hechel D, Nowik I (1997) Mov Disord 12:258–260CrossRefGoogle Scholar
  19. 19.
    Costello DJ, Walsh SL, Harrington HJ, Walsh CH (2004) J Neurol Neurosurg Psychiatry 75:631–633PubMedCrossRefGoogle Scholar
  20. 20.
    Nielsen JE, Jensen LN, Krabbe KJ (1995) Neurol Neurosurg Psychiatry 59:318–321CrossRefGoogle Scholar
  21. 21.
    Dekker MC, Giesbergen PC, Njajou OT, van Swieten JC, Hofman A, Breteler MM, van Duijn CM (2003) Neurosci Lett 348:117–119PubMedCrossRefGoogle Scholar
  22. 22.
    Zucca FA, Giaveri G, Gallorini M, Albertini A, Toscani M, Pezzoli G, Lucius R, Wilms H, Sulzer D, Ito S, Wakamatsu K, Zecca L (2004) Pigment Cell Res 17:610–617PubMedCrossRefGoogle Scholar
  23. 23.
    Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P (2003) Neurotox Res 5:35–44PubMedGoogle Scholar
  24. 24.
    Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) J Neurochem 86:1142–1148PubMedCrossRefGoogle Scholar
  25. 25.
    Zecca L, Zucca F, Wilms H, Sulzer D (2003) Trends Neurosci 26:578–580PubMedCrossRefGoogle Scholar
  26. 26.
    Newville M (2003) Fundamentals of XAFS.
  27. 27.
    Bare SR (2005) EXAFS data collection and analysis course.
  28. 28.
    Koningsberger DC, Prins R (eds) (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New YorkGoogle Scholar
  29. 29.
    Parsons JG, Aldrich MV, Gardea-Torresdey JL (2002) Appl Spectrosc Rev 37:187–222CrossRefGoogle Scholar
  30. 30.
    Ascone I, Cognigni A, Giorgetti M, Berrettoni M, Zamponi S, Marassi RJ (1999) Synchrotron Radiat 6:384–386CrossRefGoogle Scholar
  31. 31.
    Sarkar BJ (2000) Inorg Biochem 79:187–191CrossRefGoogle Scholar
  32. 32.
    Gunter KK, Miller LM, Aschner M, Eliseev R, Depuis D, Gavin CE, Gunter TE (2002) Neurotoxicology 23:127–146PubMedCrossRefGoogle Scholar
  33. 33.
    Nicolis I, Curis E, Deschamps P, Benazeth SJ (2003) Synchrotron Radiat 10:96–102CrossRefGoogle Scholar
  34. 34.
    Yoshida S, Ektessabi A, Fujisawa S (2001) J Synchrotron Radiat 8:998–1000PubMedCrossRefGoogle Scholar
  35. 35.
    Ide-Ektessabi A, Kawakami T, Watt F (2004) Nucl Instrum Methods Phys Res Sect B 213:590–594CrossRefGoogle Scholar
  36. 36.
    Yoshida S, Ide-Ektessabi A, Fujisawa S (2003) Struct Chem 14:85–95CrossRefGoogle Scholar
  37. 37.
    Chwiej J, Szczerbowska-Boruchowska M, Lankosz M, Wojcik S, Falkenberg G, Stegowski Z, Setkowicz Z (2005) Spectrochim Acta Part B 60:1531–1537CrossRefGoogle Scholar
  38. 38.
    Bobrański B (1966) Chemia organiczna. 3rd edn. PWN, WarsawGoogle Scholar
  39. 39.
    Falkenberg G, Clauss O, Tschentscher T (2001) Hasylab annual report.
  40. 40.
    Ortega R, Deves G, Bohic S, Simionovici A, Menez B, Bonnin-Mosbah M (2001) Nucl Instrum Methods Phys Res Part B 181:480–484CrossRefGoogle Scholar
  41. 41.
    Ektessabi A, Shikine S, Kitamura N, Rokkum M, Johansson C (2001) X-Ray Spectrom 30:44–48CrossRefGoogle Scholar
  42. 42.
    Sugimoto T, Ide-Ektessabi A, Ishihara R; Tanigaki M (2004) J Electron Spectrosc Relat Phenom 137–140:831–838CrossRefGoogle Scholar
  43. 43.
    Wilke M, Farges F, Petit PE, Brown GE (2001) Am Mineral 86:714–730Google Scholar
  44. 44.
    Galazka-Friedman J, Bauminger ER, Friedman A, Barcikowska M, Hechel D, Nowik I (1997) Mov Disord 12:258–260CrossRefGoogle Scholar
  45. 45.
    Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) J Neurochem 63:793–807PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • Joanna Chwiej
    • 1
    Email author
  • Dariusz Adamek
    • 2
  • Magdalena Szczerbowska-Boruchowska
    • 1
  • Anna Krygowska-Wajs
    • 2
  • Slawomir Wojcik
    • 1
  • Gerald Falkenberg
    • 3
  • Anna Manka
    • 1
  • Marek Lankosz
    • 1
  1. 1.Department of Nuclear Methods, Faculty of Physics and Applied Computer ScienceAGH—University of Science and TechnologyCracowPoland
  2. 2.Institute of Neurology, Collegium MedicumJagiellonian UniversityCracowPoland
  3. 3.Hamburger Synchrotronstrahlungslabor HASYLAB at DESYHamburgGermany

Personalised recommendations