JBIC Journal of Biological Inorganic Chemistry

, Volume 12, Issue 2, pp 139–146 | Cite as

DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state

  • Robert W. Clark
  • Hwan Youn
  • Andrea J. Lee
  • Gary P. Roberts
  • Judith N. Burstyn
Original Paper


CooA is a transcription factor from Rhodospirillum rubrum that is regulated by the binding of the small molecule effector, CO, to a heme moiety in the protein. The heme in CooA is axially ligated by two endogenous donors in the Fe(III) and Fe(II) states of the protein, and CO binding to the Fe(II) state results in replacement of the distal ligand. Reduction of the heme in the absence of CO results in a ligand switch on the proximal side, in which a cysteine thiolate in the Fe(III) state is replaced by a histidine in the Fe(II) state. Recently, a variant, termed RW CooA, was designed to respond to a new effector; Fe(II) RW CooA shows high specificity and induced DNA-binding activity in the presence of imidazole. Spectroscopic characterization of the imidazole adducts of RW CooA revealed that, unlike CO, imidazole binds to both Fe(III) RW CooA and Fe(II) RW CooA. The spectral characteristics are consistent with normal function of the redox-mediated ligand switch; Fe(III)–imidazole RW CooA bears a thiolate ligand and Fe(II)–imidazole RW CooA bears a neutral donor ligand. Since the effector binds to both redox states, RW CooA was used to probe the role of the redox-mediated ligand switch in the CooA activation mechanism. Functional studies of Fe(III)–imidazole and Fe(II)–imidazole ligated RW CooA demonstrate that only the Fe(II)–imidazole form is active for DNA binding. Thus, the ligand switch is essential for the activating conformational change and may prevent aberrant activation of CooA by other neutral diatomic molecules.


CooA CO sensor Heme Ligand switch Transcription factor 

Supplementary material


  1. 1.
    Jain R, Chan MK (2003) J Biol Inorg Chem 8:1–11PubMedCrossRefGoogle Scholar
  2. 2.
    Gilles-Gonzalez MA, Gonzalez G (2005) J Inorg Biochem 99:1–22PubMedCrossRefGoogle Scholar
  3. 3.
    Aono S (2003) Acc Chem Res 36:825–831PubMedCrossRefGoogle Scholar
  4. 4.
    Roberts GP, Kerby RL, Youn H, Conrad M (2005) J Inorg Biochem 99:280–292PubMedCrossRefGoogle Scholar
  5. 5.
    Kerby RL, Ludden PW, Roberts GP (1995) J Bacteriol 177:2241–2244PubMedGoogle Scholar
  6. 6.
    Shelver D, Kerby RL, He Y, Roberts GP (1995) J Bacteriol 177:2157–2163PubMedGoogle Scholar
  7. 7.
    Shelver D, Kerby RL, He Y, Roberts GP (1997) Proc Natl Acad Sci USA 94:11216–11220PubMedCrossRefGoogle Scholar
  8. 8.
    Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL (2000) Nat Struct Biol 7:876–880PubMedCrossRefGoogle Scholar
  9. 9.
    Roberts GP, Thorsteinsson MV, Kerby RL, Lanzilotta WN, Poulos T (2001) Prog Nucleic Acid Res Mol Biol 67:35–63PubMedGoogle Scholar
  10. 10.
    Reynolds MF, Shelver D, Kerby RL, Parks RB, Roberts GP, Burstyn JN (1998) J Am Chem Soc 120:9080–9081CrossRefGoogle Scholar
  11. 11.
    Aono S, Ohkubo K, Matsuo T, Nakajima H (1998) J Biol Chem 273:25757–25764PubMedCrossRefGoogle Scholar
  12. 12.
    Shelver D, Thorsteinsson MV, Kerby RL, Chung S-Y, Roberts GP, Reynolds MF, Parks RB, Burstyn JN (1999) Biochemistry 38:2669–2678PubMedCrossRefGoogle Scholar
  13. 13.
    Dhawan IK, Shelver D, Thorsteinsson MV, Roberts GP, Johnson MK (1999) Biochemistry 38:12805–12813PubMedCrossRefGoogle Scholar
  14. 14.
    Clark RW, Youn H, Parks RB, Cherney MM, Roberts GP, Burstyn JN (2004) Biochemistry 43:14149–14160PubMedCrossRefGoogle Scholar
  15. 15.
    Yamamoto K, Ishikawa H, Takahashi S, Ishimori K, Morishima I, Nakajima H, Aono S (2001) J Biol Chem 276:11473–11476PubMedCrossRefGoogle Scholar
  16. 16.
    Puranik M, Nielsen SB, Youn H, Hvitved AN, Bourassa JL, Case MA, Tengroth C, Balakrishnan G, Thorsteinsson MV, Groves JT, McLendon GL, Roberts GP, Olson JS, Spiro TG (2004) J Biol Chem 279:21096–21108PubMedCrossRefGoogle Scholar
  17. 17.
    Coyle CM, Puranik M, Youn H, Nielsen SB, Williams RD, Kerby RL, Roberts GP, Spiro TG (2003) J Biol Chem 278:35384–35393PubMedCrossRefGoogle Scholar
  18. 18.
    Kerby RL, Youn H, Thorsteinsson MV, Roberts GP (2003) J Mol Biol 325:809–823PubMedCrossRefGoogle Scholar
  19. 19.
    Youn H, Kerby RL, Thorsteinsson MV, Conrad M, Staples CR, Serate J, Beack J, Roberts GP (2001) J Biol Chem 276:41603–41610PubMedCrossRefGoogle Scholar
  20. 20.
    Youn H, Kerby RL, Roberts GP (2003) J Biol Chem 278:2333–2340PubMedCrossRefGoogle Scholar
  21. 21.
    Youn H, Kerby RL, Roberts GP (2004) J Biol Chem 279:45744–45752PubMedCrossRefGoogle Scholar
  22. 22.
    Clark RW, Lanz ND, Lee AJ, Kerby RL, Roberts GP, Burstyn JN (2006) Proc Natl Acad Sci USA 103:891–896PubMedCrossRefGoogle Scholar
  23. 23.
    Heo J, Halbleib CM, Ludden PW (2001) Proc Natl Acad Sci USA 98:7690–7693PubMedCrossRefGoogle Scholar
  24. 24.
    Nakajima H, Honma Y, Tawara T, Kato T, Park SY, Miyatake H, Shiro Y, Aono S (2001) J Biol Chem 276:7055–7061PubMedCrossRefGoogle Scholar
  25. 25.
    Waterman MR (1978) Methods Enzymol 52:456–463PubMedCrossRefGoogle Scholar
  26. 26.
    Thorsteinsson MV, Kerby RL, Conrad M, Youn H, Staples CR, Lanzilotta WN, Poulos TJ, Serate J, Roberts GP (2000) J Biol Chem 275:39332–39338PubMedCrossRefGoogle Scholar
  27. 27.
    Hollenberg PF, Hager LP (1973) J Biol Chem 248:2630–2633PubMedGoogle Scholar
  28. 28.
    Yu CA, Gunsalus IC, Katagiri M, Suhara K, Takemori S (1974) J Biol Chem 249:94–101PubMedGoogle Scholar
  29. 29.
    Tang SC, Koch S, Papaefthymiou GC, Foner S, Frankel RB, Ibers JA, Holm RH (1976) J Am Chem Soc 98:2414–2434PubMedCrossRefGoogle Scholar
  30. 30.
    Sono M, Dawson JH, Hall K, Hager LP (1986) Biochemistry 25:347–356PubMedCrossRefGoogle Scholar
  31. 31.
    Lu Y, Casimiro DR, Bren KL, Richards JH, Gray HB (1993) Proc Natl Acad Sci USA 90:11456–11459PubMedCrossRefGoogle Scholar
  32. 32.
    Dawson JH, Andersson LA, Sono M (1982) J Biol Chem 257:3606–3617PubMedGoogle Scholar
  33. 33.
    Bracete AM, Sono M, Dawson JH (1991) Biochim Biophys Acta 1080:264–270PubMedGoogle Scholar
  34. 34.
    Reynolds MF, Parks RB, Burstyn JN, Shelver D, Thorsteinsson MV, Kerby RL, Roberts GP, Vogel KM, Spiro TG (2000) Biochemistry 39:388–396PubMedCrossRefGoogle Scholar
  35. 35.
    Pinkert JC, Clark RW, Burstyn JN (2006) J Biol Inorg Chem 11:642–650PubMedCrossRefGoogle Scholar
  36. 36.
    Thorsteinsson MV, Kerby RL, Youn H, Conrad M, Serate J, Staples CR, Roberts GP (2001) J Biol Chem 276:26807–26813PubMedCrossRefGoogle Scholar
  37. 37.
    Youn H, Kerby RL, Thorsteinsson MV, Clark RW, Burstyn JN, Roberts GP (2002) J Biol Chem 277:33616–33623PubMedCrossRefGoogle Scholar
  38. 38.
    Boon EM, Huang SH, Marletta MA (2005) Nat Chem Biol 1:53–59PubMedCrossRefGoogle Scholar
  39. 39.
    Boon EM, Marletta MA (2005) J Inorg Biochem 99:892–902PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • Robert W. Clark
    • 1
  • Hwan Youn
    • 2
  • Andrea J. Lee
    • 3
  • Gary P. Roberts
    • 2
  • Judith N. Burstyn
    • 3
  1. 1.Department of ChemistryHope CollegeHollandUSA
  2. 2.Department of BacteriologyUniversity of WisconsinMadisonUSA
  3. 3.Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations