JBIC Journal of Biological Inorganic Chemistry

, Volume 11, Issue 7, pp 937–947 | Cite as

Metallopeptide-promoted inactivation of angiotensin-converting enzyme and endothelin-converting enzyme 1: toward dual-action therapeutics

Original Paper

Abstract

A series of metallopeptides based on the amino terminal copper/nickel (ATCUN) binding motif have been evaluated as classical inhibitors and catalytic inactivators of both rabbit and human angiotensin-converting enzyme (hACE), and human endothelin-converting enzyme 1 (hECE-1). The cobalt complex [KGHK–Co(NH3)2]2+, where KGHK is lysylglycylhistidyllysine, displayed similar K I and IC50 values to those found for [KGHK–Cu]+, in spite of the enhanced charge, and so either the influence of charge is offset by the steric influence of the axially coordinated ammine ligands, or binding is dominated by contributions from the amino acid side chains, especially the C-terminal lysine that mimics the binding pattern observed for lisinopril. Moreover, the inhibition observed for [KGHK–Co(NH3)2]2+ contrasts with the activation of hACE by Co2+(aq), reflecting the stimulation of enzyme activity following replacement of the catalytic zinc cofactor by cobalt ion at each of the two active sites. Quantitative analysis of the dose-dependent stimulation of activity by Co2+(aq) yielded apparent affinities of 1.3 ± 0.2 and 56 ± 8 μM for the two sites in the presence of saturating Zn2+ (10 μM). Catalytic inactivation of hACE by [KGHK–Cu] + at subsaturating concentrations had previously been characterized, with k obs = 2.9 ± 0.5 × 10−2 min−1. Under similar conditions, the same complex is found to catalytically inactivate hECE-1, with k obs = 2.12 ± 0.16 × 10−2 min−1, demonstrating the potential for dual-action activity against two key drug targets in cardiovascular disease. Irreversible inactivation of a drug target represents a novel mechanism of drug action that complements existing classical inhibitor strategies that underlie current drug discovery efforts.

Keywords

ATCUN Angiotensin-converting enzyme Endothelin-converting enzyme 1 Drug design Catalytic inactivation 

Notes

Acknowledgement

This work was supported by the National Institutes of Health GM063740.

Supplementary material

775_2006_145_MOESM1_ESM.doc (1.3 mb)
Supplementary material

References

  1. 1.
    Hoyer D, Cho H, Schultz PG (1990) J Am Chem Soc 112:3249–3250CrossRefGoogle Scholar
  2. 2.
    Suh J (2003) Acc Chem Res 36:562–570PubMedCrossRefGoogle Scholar
  3. 3.
    Jeon Joong W, Son Sang J, Yoo Chang E, Hong In S, Song Jung B, Suh J (2002) Org Lett 4:4155–4158PubMedCrossRefGoogle Scholar
  4. 4.
    Inguimbert N, Coric P, Poras H, Meudal H, Teffot F, Fournie-Zaluski M-C, Roques BP (2002) J Med Chem 45:1477–1486PubMedCrossRefGoogle Scholar
  5. 5.
    Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Proc Natl Acad Sci USA 85:9386–9390PubMedCrossRefGoogle Scholar
  6. 6.
    Wei L, Alhenc-Gelas F, Corvol P, Clauser E (1991) J Biol Chem 266:9002–9008PubMedGoogle Scholar
  7. 7.
    Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Biochemistry 16:5484–5491PubMedCrossRefGoogle Scholar
  8. 8.
    Cheung HS, Cushman DW (1973) Biochim Biophys Acta 293:451–463PubMedGoogle Scholar
  9. 9.
    Natesh R, Schwager SLU, Sturrock ED, Acharya KR (2003) Nature 421:551–554PubMedCrossRefGoogle Scholar
  10. 10.
    Golik A, Zaidenstein R, Dishi V, Blatt A, Cohen N, Cotter G, Berman S, Weissgarten J (1998) J Am Coll Nutr 17:75–78PubMedGoogle Scholar
  11. 11.
    Guy JL, Jackson RM, Acharya KR, Sturrock ED, Hooper NM, Turner AJ (2003) Biochemistry 42:13185–13192PubMedCrossRefGoogle Scholar
  12. 12.
    Cuenoud B, Tarasow TM, Schepartz A (1992) Tetrahedron Lett 33:895–898CrossRefGoogle Scholar
  13. 13.
    Brown KC, Yang S-H, Kodadek T (1995) Biochemistry 34:4733–4739PubMedCrossRefGoogle Scholar
  14. 14.
    Mack DP, Iverson BL, Dervan PB (1988) J Am Chem Soc 110:7572–7574CrossRefGoogle Scholar
  15. 15.
    Jin Y, Cowan JA (2005) J Am Chem Soc 127:8408–8415PubMedCrossRefGoogle Scholar
  16. 16.
    Long EC (1999) Acc Chem Res 32:827–836CrossRefGoogle Scholar
  17. 17.
    Khossravi M, Borchardt RT (2000) Pharm Res 17:851–858PubMedCrossRefGoogle Scholar
  18. 18.
    Gokhale NH, Cowan JA (2005) Chem Commun 5916–5918Google Scholar
  19. 19.
    Hawkins CJ, Martin J (1983) Inorg Chem 22:3879–3883CrossRefGoogle Scholar
  20. 20.
    Ananias DC, Long EC (1997) Inorg Chem 36:2469–2471PubMedCrossRefGoogle Scholar
  21. 21.
    Ananias DC, Long EC (2000) J Am Chem Soc 122:10460–10461CrossRefGoogle Scholar
  22. 22.
    Lau S-J, Kruck TPA, Sarkar B (1974) J Biol Chem 249:5878–5884PubMedGoogle Scholar
  23. 23.
    Conato C, Kozlowski H, Mlynarz P, Pulidori F, Remelli M (2002) Polyhedron 21:1469–1474CrossRefGoogle Scholar
  24. 24.
    Green BJ, Tesfai TM, Xie Y, Margerum DW (2004) Inorg Chem 43:1463–1471PubMedCrossRefGoogle Scholar
  25. 25.
    Schmidt M, Kroeger B, Jacob E, Seulberger H, Subkowski T, Otter R, Meyer T, Schmalzing G, Hillen H (1994) FEBS Lett 356:238–243PubMedCrossRefGoogle Scholar
  26. 26.
    Shimada K, Matsushita Y, Wakabayashi K, Takahashi M, Matsubara A, Iijima Y, Tanzawa K (1995) Biochem Biophys Res Commun 207:807–812PubMedCrossRefGoogle Scholar
  27. 27.
    Yorimitsu K, Moroi K, Inagaki N, Saito T, Masuda Y, Masaki T, Seino S, Kimura S (1995) Biochem Biophys Res Commun 208:721–727PubMedCrossRefGoogle Scholar
  28. 28.
    Valdenaire O, Rohrbacher E, Mattei M-G (1995) J Biol Chem 270:29794–29798PubMedCrossRefGoogle Scholar
  29. 29.
    Piquilloud Y, Reinharz A, Roth M (1970) Biochim Biophys Acta 206:136–142PubMedGoogle Scholar
  30. 30.
    Johnson GD, Ahn K (2000) Anal Biochem 286:112–118PubMedCrossRefGoogle Scholar
  31. 31.
    Webb JL (1963) Enzyme and metabolic inhibitors. General principles of inhibition, vol I. Academic, New York, p 951Google Scholar
  32. 32.
    Cushman DW, Cheung HS (1971) Biochem Pharmacol 20:1637–1648CrossRefGoogle Scholar
  33. 33.
    Sutton PA, Buckingham DA (1987) Acc Chem Res 20:357–364CrossRefGoogle Scholar
  34. 34.
    Harford C, Sarkar B (1997) Acc Chem Res 30:123–130CrossRefGoogle Scholar
  35. 35.
    Kimoto E, Tanaka H, Gyotoku J, Morishige F, Pauling L (1983) Cancer Res 43:824–828PubMedGoogle Scholar
  36. 36.
    Bossu FP, Chellappa KL, Margerum DW (1977) J Am Chem Soc 99:2195–203PubMedCrossRefGoogle Scholar
  37. 37.
    Stadtman ER (1993) Ann Rev Biochem 62:797–821PubMedCrossRefGoogle Scholar
  38. 38.
    Stadtman ER (1990) Free Radical Biol Med 9:315–325CrossRefGoogle Scholar
  39. 39.
    Amici A, Levine RL, Tsai L, Stadtman ER (1989) J Biol Chem 264:3341–3346PubMedGoogle Scholar
  40. 40.
    Turner AJ, Isaac RE, Coates D (2001) BioEssays 23:261–269PubMedCrossRefGoogle Scholar
  41. 41.
    Bull HG, Thornberry NA, Cordes MHJ, Patchett AA, Cordes EH (1985) J Biol Chem 260:2952–2962PubMedGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  1. 1.Evans Laboratory of ChemistryOhio State UniversityColumbusUSA

Personalised recommendations