Reduction of dioxygen by enzymes containing copper

Minireview

Abstract

The reduction of dioxygen is a key step in many important biological processes including respiration and ligand oxidation. Enzymes containing either iron or copper or, indeed, both elements are often involved in this process, yet the catalytic mechanisms employed are not fully understood at the current time despite intensive biochemical, spectroscopic and structural studies. The aim of this article is to highlight the current structural knowledge regarding the process of dioxygen reduction using examples of copper-containing enzymes.

Keywords

Dioxygen Ligand binding X-ray crystallography 

References

  1. 1.
    Hatcher LQ, Karlin KD (2004) J Biol Inorg Chem 9:669–683CrossRefPubMedGoogle Scholar
  2. 2.
    Malmström BG (1982) Annu Rev Biochem 51:21–59CrossRefPubMedGoogle Scholar
  3. 3.
    Halcrow MA, Knowles PF, Phillips SV (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook of Metalloproteins. Dekker, New York, pp 709–762Google Scholar
  4. 4.
    Parsons MP, Convery MA, Wilmot CM, Yadav KD, Blakely V, Corner AS, Phillips ES, McPherson MJ, Knowles PF (1995) Structure 3:1171–1184CrossRefPubMedGoogle Scholar
  5. 5.
    Murray JM, Saysell CG, Wilmot CM, Tambyrajah WS, Jaeger J, Knowles PF, Philips SE, McPherson MJ (1999) Biochemistry 38:8217–8227CrossRefPubMedGoogle Scholar
  6. 6.
    Wilce MC, Dooley DM, Freeman HC, Guss JM, Matsunami H, McIntire WS, Ruggiero CE, Tanizawa K, Yamaguchi H (1997) Biochemistry 36:16116–16133CrossRefPubMedGoogle Scholar
  7. 7.
    Li R, Klinman JP, Mathews FS (1998) Structure 6:293–307CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar V, Dooley DM, Freeman HC, Guss JM, Harvey I, McGuirl MA, Wilce MC, Zubak VM (1996) Structure 4:943–955CrossRefPubMedGoogle Scholar
  9. 9.
    Lunelli M, Di Paolo ML, Biadene M, Calderone V, Battistutta R, Scarpa M, Rigo A, Zanotti G (2005) J Mol Biol 346:991–1004CrossRefPubMedGoogle Scholar
  10. 10.
    Ito N, Phillips SEV, Yadav KDS, Knowles P (1994) J Mol Biol 238:794–814CrossRefPubMedGoogle Scholar
  11. 11.
    Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1997) Science 278:1300–1305CrossRefPubMedGoogle Scholar
  12. 12.
    Duff AP, Cohen AE, Ellis PJ, Kuchar JA, Langley DB, Shepard EM, Dooley DM, Freeman HC, Guss JM (2003) Biochemistry 42:15148–15157CrossRefPubMedGoogle Scholar
  13. 13.
    Klinman JP (1996) Chem Rev 96:2541–2562CrossRefPubMedGoogle Scholar
  14. 14.
    Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867CrossRefPubMedGoogle Scholar
  15. 15.
    Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SEV (1999) Science 268:1724–1728CrossRefGoogle Scholar
  16. 16.
    Fujisawa K, Tanaka M, Moro-oka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080CrossRefGoogle Scholar
  17. 17.
    Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB (2002) J Am Chem Soc 124:10660–10661CrossRefPubMedGoogle Scholar
  18. 18.
    Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI (2003) J Am Chem Soc 125:466–474CrossRefPubMedGoogle Scholar
  19. 19.
    Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045CrossRefPubMedGoogle Scholar
  20. 20.
    Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Nat Struct Biol 5:1084–1090CrossRefPubMedGoogle Scholar
  21. 21.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606CrossRefPubMedGoogle Scholar
  22. 22.
    Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG (1994) Protein Struct Funct Genet 19:302–309CrossRefGoogle Scholar
  23. 23.
    Decker H, Dillinger R, Tuczek F (2000) Angew Chem Int Ed Engl 39:1591–1595CrossRefPubMedGoogle Scholar
  24. 24.
    Gerdemann C, Eicken C, Galla HJ, Krebs B (2002) J Inorg Biochem 89:155–158CrossRefPubMedGoogle Scholar
  25. 25.
    Gerdeman C, Eicken C, Krebs B (2002) Acc Chem Res 35:183–191CrossRefPubMedGoogle Scholar
  26. 26.
    Siegbahn PE (2003) J Biol Inorg Chem 8:567–576PubMedGoogle Scholar
  27. 27.
    Granata A, Monzani E, Casella L (2004) J Biol Inorg Chem 9:903–913CrossRefPubMedGoogle Scholar
  28. 28.
    Magnus KA, Ton-That H, Carpenter JE (1994) Chem Rev 94:727–735CrossRefGoogle Scholar
  29. 29.
    Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042PubMedCrossRefGoogle Scholar
  30. 30.
    Matoba Y, Kumagai T, Yamamoto A, Yoshitu H, Sugiyama M (2006) J Biol Chem Epub Jan 25Google Scholar
  31. 31.
    Messerschmidt A (1997) Multi-copper oxidases. World Science, SingaporeGoogle Scholar
  32. 32.
    Lindley PF (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Dekker, New York, pp 763–811Google Scholar
  33. 33.
    Sang-Kyu L, George SB, Antholine WE, Hedman B, Hodgson K, Solomon EI (2002) J Am Chem Soc 124:6180–6193CrossRefPubMedGoogle Scholar
  34. 34.
    Quintanar L, Stoj C, Tzu-Pin W, Kosman DJ, Solomon EI (2005) Biochemistry 44:6081–6091CrossRefPubMedGoogle Scholar
  35. 35.
    Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dalton Trans 21:3507–3513CrossRefPubMedGoogle Scholar
  36. 36.
    Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Kiovula A, Rouvinen J (2002) Nat Struct Biol 9:601–605PubMedGoogle Scholar
  37. 37.
    Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) J Biol Chem 278:19416–19425CrossRefPubMedGoogle Scholar
  38. 38.
    Messerschmidt A, Luecke H, Huber R (1993) J Mol Biol 230:997–1014CrossRefPubMedGoogle Scholar
  39. 39.
    Messerschmidt A, Rossi A, Ladenstein R, Huber R, Bolognesi M, Gatti G, Marchesini A, Petruzzelli R, Finazzi-Agro A (1989) J Mol Biol 206:513–529CrossRefPubMedGoogle Scholar
  40. 40.
    Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi-Agro A (1992) J Mol Biol 224:179–205CrossRefPubMedGoogle Scholar
  41. 41.
    Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN Jr, Wulff M, Anfinrud PA (2003) Science 300:1944–1947CrossRefPubMedGoogle Scholar
  42. 42.
    Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Biochemistry 41:7325–7333CrossRefPubMedGoogle Scholar
  43. 43.
    Piontek K, Antorini M, Choinowski T (2002) J Biol Chem 277:37663–37669CrossRefPubMedGoogle Scholar
  44. 44.
    Brändén R, Deinum J, Coleman M (1978) FEBS Lett 89:180–182CrossRefPubMedGoogle Scholar
  45. 45.
    Zaitsev VN, Zaitseva I, Papiz M, Lindley PF (1999) J Biol Inorg Chem 4:579–587CrossRefPubMedGoogle Scholar
  46. 46.
    Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) J Biol Chem 279:23472–23476CrossRefPubMedGoogle Scholar
  47. 47.
    Ferguson-Miller S, Babcock GT (1996) Chem Rev 96:2889–2908CrossRefPubMedGoogle Scholar
  48. 48.
    Michel H, Behr J, Harrenga A, Kannt A (1998) Annu Rev Biophys Biomol Struct 27:329–356CrossRefPubMedGoogle Scholar
  49. 49.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Science 269:1069–1074PubMedCrossRefGoogle Scholar
  50. 50.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Science 280:1723–1729CrossRefPubMedGoogle Scholar
  52. 52.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669CrossRefPubMedGoogle Scholar
  53. 53.
    Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Proc Natl Acad Sci USA 94:10547–10553CrossRefPubMedGoogle Scholar
  54. 54.
    Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) EMBO J 19:1766–1776CrossRefPubMedGoogle Scholar
  55. 55.
    Malmström BG (1998) J Biol Inorg Chem 3:339–343CrossRefGoogle Scholar
  56. 56.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations