Density functional theory investigations of NiN2S2 reactivity as a function of nitrogen donor type and N–H···S hydrogen bonding inspired by nickel-containing superoxide dismutase

  • C. S. Mullins
  • C. A. Grapperhaus
  • P. M. Kozlowski
Original Paper

Abstract

Density functional theory calculations on a series of six square-planar NiN2S2 complexes have been performed. The nitrogen donor type was varied from diamino in Ni(bme-dmed), 1, to amino-amido in [Ni(mama)], 2, to diamido in [Ni(ema)]2−, 3. The sulfur-oxygenated derivative Ni(bme-O2-dmed), 4, and hydrogen-bonded derivatives (5 and 6) of 2 and 3 were also studied. Full geometric optimization and subsequent population analyses were performed using the 6–311g(d,p) basis set. The frontier molecular orbitals for all complexes contain significant nickel and sulfur character. Molecular electrostatic potentials show that amido nitrogen donors increase electron density at nickel relative to sulfur. Sulfur modification further shifts electron density away from the ligand towards the metal. It is proposed that the nitrogen donor type and sulfur modification may regulate sulfur-site reactivity in nickel-containing superoxide dismutase.

Keywords

Density functional theory Nickel-containing superoxide dismutase NiN2S2 donor set Hydrogen bonding Sulfur modification 

Abbreviations

DFT

Density functional theory

HOMO

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital

NBO

Natural bond orbital

SOD

Superoxide dismutase

Notes

Acknowledgements

This research was supported by the National Science Foundation (CHE-0238137) and in part by the donors of the Petroleum Research Fund, administered by the American Chemical Society (ACS-PRF no. 37663-G3).

Supplementary material

775_2006_109_MOESM1_ESM.pdf (308 kb)
Supplementary material

References

  1. 1.
    Fridovich I (1995) Annu Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  2. 2.
    Miller AF (2004) Curr Opin Chem Biol 8:162–168PubMedCrossRefGoogle Scholar
  3. 3.
    Lee JW, Roe JH, Kang SO (2002) Methods Enzymol 349:90–101PubMedCrossRefGoogle Scholar
  4. 4.
    Hough MA, Hasnain SS (2003) Structure 11:937–946PubMedCrossRefGoogle Scholar
  5. 5.
    Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Carugo KD (2004) Proc Natl Acad Sci USA 101:8569–8574PubMedCrossRefGoogle Scholar
  6. 6.
    Barondeau DP, Kassmann J, Bruns CK, Tainer JA, Getzoff ED (2004) Biochemistry 43:8038–8047PubMedCrossRefGoogle Scholar
  7. 7.
    Szilagyi RK, Bryngelson PA, Maroney MJ, Hedman B, Hodgson KO, Solomon EI (2004) J Am Chem Soc 126:3018–3019PubMedCrossRefGoogle Scholar
  8. 8.
    Bryngelson PA, Arobo SE, Pinkham JL, Cabelli DE, Maroney MJ (2004) J Am Chem Soc 126:460–461PubMedCrossRefGoogle Scholar
  9. 9.
    Fiedler AT, Bryngelson PA, Maroney MJ, Brunold TC (2005) J Am Chem Soc 127:5449–5462PubMedCrossRefGoogle Scholar
  10. 10.
    Grapperhaus CA, Darensbourg MY (1998) Acc Chem Res 31:451–459CrossRefGoogle Scholar
  11. 11.
    Farmer PJ, Verpeaux JN, Amatore C, Darensbourg MY, Musie G (1994) J Am Chem Soc 116:9355–9356CrossRefGoogle Scholar
  12. 12.
    Buonomo RM, Font I, Maguire MJ, Reibenspies JH, Tuntulani T, Darensbourg MY (1995) J Am Chem Soc 117:5427–5427CrossRefGoogle Scholar
  13. 13.
    Buonomo RM, Font I, Maguire MJ, Reibenspies JH, Tuntulani T, Darensbourg MY (1995) J Am Chem Soc 117:963–973CrossRefGoogle Scholar
  14. 14.
    Tuntulani T, Musie G, Reibenspies JH, Darensbourg MY (1995) Inorg Chem 34:6279–6286CrossRefGoogle Scholar
  15. 15.
    Buonomo RM, Reibenspies JH, Darensbourg MY (1996) Chem Ber 129:779–784CrossRefGoogle Scholar
  16. 16.
    Kruger HJ, Peng G, Holm RH (1991) Inorg Chem 30:734–742CrossRefGoogle Scholar
  17. 17.
    Kruger HJ, Holm RH (1989) Inorg Chem 28:1148–1155CrossRefGoogle Scholar
  18. 18.
    Hatlevik O, Blanksma MC, Mathrubootham V, Arif AM, Hegg EL (2004) J Biol Inorg Chem 9:238–246PubMedCrossRefGoogle Scholar
  19. 19.
    Hegg EL (2004) Acc Chem Res 37:775–783PubMedCrossRefGoogle Scholar
  20. 20.
    Kaasjager VE, Bouwman E, Gorter S, Reedijk J, Grapperhaus CA, Reibenspies JH, Smee JJ, Darensbourg MY, Derecskei-Kovacs A, Thomson LM (2002) Inorg Chem 41:1837–1844PubMedCrossRefGoogle Scholar
  21. 21.
    Grapperhaus CA, Mullins CS, Kozlowski PK, Mashuta MS (2004) Inorg Chem 43:2859–2866PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson MC, Busch DH (1962) J Am Chem Soc 84:1762–1763CrossRefGoogle Scholar
  23. 23.
    Blinn E, Busch DH (1968) J Am Chem Soc 90:4280–4285CrossRefGoogle Scholar
  24. 24.
    Thompson MC, Busch DH (1964) J Am Chem Soc 86:3651–3656CrossRefGoogle Scholar
  25. 25.
    Busch DH, Jicha DC, Thompson MC, Wrathall JW, Blinn E (1964) J Am Chem Soc 86:3642–3650CrossRefGoogle Scholar
  26. 26.
    Busch DH, Burke JA, Jicha DC, Thompson MC, Morris ML (1963) Adv Inorg Chem 37:125Google Scholar
  27. 27.
    Grapperhaus CA, Mullins CS, Mashuta MS (2005) Inorg Chim Acta 358:623–632CrossRefGoogle Scholar
  28. 28.
    Grapperhaus CA, Kreso M, Burkhardt GA, Roddy JVF, Mashuta MS (2005) Inorg Chim Acta 358:123–130CrossRefGoogle Scholar
  29. 29.
    Kumar M, Colpas GJ, Day RO, Maroney MJ (1989) J Am Chem Soc 111:8323–8325CrossRefGoogle Scholar
  30. 30.
    Kumar M, Day RO, Colpas GJ, Maroney MJ (1989) J Am Chem Soc 111:5974–5976CrossRefGoogle Scholar
  31. 31.
    Mirza SA, Pressler MA, Kumar M, Day RO, Maroney MJ (1993) Inorg Chem 32:977–987CrossRefGoogle Scholar
  32. 32.
    Maroney MJ, Choudhury SB, Bryngelson PA, Mirza SA, Sherrod MJ (1996) Inorg Chem 35:1073–1076PubMedCrossRefGoogle Scholar
  33. 33.
    Henderson RK, Bouwman E, Spek AL, Reedijk J (1997) Inorg Chem 36:4616–4617PubMedCrossRefGoogle Scholar
  34. 34.
    Lahti DW, Espenson JH (1999) Inorg Chem 38:5230–5234CrossRefGoogle Scholar
  35. 35.
    Sivasubramanian VK, Ganesan M, Rajagopal S, Ramaraj R (2002) J Org Chem 67:1506–1514PubMedCrossRefGoogle Scholar
  36. 36.
    Ashby MT, Enemark JH, Lichtenberger DL (1988) Inorg Chem 27:191–197CrossRefGoogle Scholar
  37. 37.
    Fox DC, Fiedler AT, Halfen HL, Brunold TC, Halfen JA (2004) J Am Chem Soc 126:7627–7638PubMedCrossRefGoogle Scholar
  38. 38.
    Notker R, B. T. S (1996) J Chem Phys 105Google Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O,Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.11.4. Gaussian, PittsburghGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussia., WallingfordGoogle Scholar
  41. 41.
    Siegbahn P, Blomberg M (2000) Chem Rev 100:421–437PubMedCrossRefGoogle Scholar
  42. 42.
    Blomberg M, Siegbahn P (2001) J Phys Chem B 105:9375–9386CrossRefGoogle Scholar
  43. 43.
    Portmann S, Lüthi HP (2000) Chimia 54:766–770Google Scholar
  44. 44.
    CambridgeSoft (2005) Chem3D 9.0, version 9.0. CambridgeSoft, CambridgeGoogle Scholar
  45. 45.
    Guerra CF, Handgraaf JW, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25:189–210CrossRefGoogle Scholar
  46. 46.
    Bellefeuille JA, Grapperhaus CA, Derecskei-Kovacs A, Reibenspies JH, Darensbourg MY (2000) Inorg Chim Acta 300:73–81CrossRefGoogle Scholar
  47. 47.
    Smith JN, Hoffman JT, Shirin Z, Carrano CJ (2005) Inorg Chem 44:2012–2017PubMedCrossRefGoogle Scholar
  48. 48.
    McGuire DG, Khan MA, Ashby MT (2002) Inorg Chem 41:2202–2208PubMedCrossRefGoogle Scholar
  49. 49.
    Walters MA, Roche CL, Rheingold AL, Kassel SW (2005) Inorg Chem 44:3777–3779PubMedCrossRefGoogle Scholar
  50. 50.
    Walters MA, Dewan JC, Min C, Pinto S (1991) Inorg Chem 30:2656–2662CrossRefGoogle Scholar
  51. 51.
    Hamilton WC, Ibers JA (1968) Hydrogen bonding in solids. Benjamin, New York, chap 5Google Scholar
  52. 52.
    Ehresmann B, Martin B, Horn AHC, Clark T (2003) J Mol Model 9:342–347PubMedCrossRefGoogle Scholar
  53. 53.
    Shearer J, Long LM (2006) Inorg Chem 45:2358–2360PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • C. S. Mullins
    • 1
  • C. A. Grapperhaus
    • 1
  • P. M. Kozlowski
    • 1
  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA

Personalised recommendations