Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies

  • Paulo Durão
  • Isabel Bento
  • André T. Fernandes
  • Eduardo P. Melo
  • Peter F. Lindley
  • Lígia O. MartinsEmail author
Original Paper


Site-directed mutagenesis has been used to replace Met502 in CotA laccase by the residues leucine and phenylalanine. X-ray structural comparison of M502L and M502F mutants with the wild-type CotA shows that the geometry of the T1 copper site is maintained as well as the overall fold of the proteins. The replacement of the weak so-called axial ligand of the T1 site leads to an increase in the redox potential by approximately 100 mV relative to that of the wild-type enzyme (E 0=455 mV). However the M502L mutant exhibits a twofold to fourfold decrease in the k cat values for the all substrates tested and the catalytic activity in M502F is even more severely compromised; 10% activity and 0.15–0.05% for the non-phenolic substrates and for the phenolic substrates tested when compared with the wild-type enzyme. T1 copper depletion is a key event in the inactivation and thus it is a determinant of the thermodynamic stability of wild-type and mutant proteins. Whilst the unfolding of the tertiary structure in the wild-type enzyme is a two-state process displaying a midpoint at a guanidinium hydrochloride concentration of 4.6 M and a free-energy exchange in water of 10 kcal/mol, the unfolding for both mutant enzymes is clearly not a two-state process. At 1.9 M guanidinium hydrochloride, half of the molecules are in an intermediate conformation, only slightly less stable than the native state (approximately 1.4 kcal/mol). The T1 copper centre clearly plays a key role, from the structural, catalytic and stability viewpoints, in the regulation of CotA laccase activity.


Laccases T1 Cu site Site-directed mutagenesis Redox potential Enzyme stability 



We would like to thank our colleagues at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), Cláudio M. Soares, António M. Baptista and Manuela M. Pereira for support and useful discussions. We would also like to thank João Carita for help with the cell growth in the Organic Fermentation Unit at the ITQB-UNL. The ITQB-UNL and the Fundação para a Ciência e a Tecnológia provided the resources necessary for this research. All X-ray data were collected at the European Synchrotron Radiation Facility, Grenoble, France, with the kind assistance of the scientists responsible for the operation of beam line ID29.


  1. 1.
    Messerschmidt A (1997) Multi-copper oxidases. World Science, SingaporeGoogle Scholar
  2. 2.
    Lindley PF (2001) In: Bertini I, Sigel A, Sigel H (eds) Multi-copper oxidases. Handbook on metalloproteins. Dekker, New York, pp 763–811Google Scholar
  3. 3.
    Xu F (1999) In: Flickinger MC, Drewn SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 1545–1554Google Scholar
  4. 4.
    Gianfreda L, Xu F, Bollag J-M (1999) Bioremediation J 3:1–25CrossRefGoogle Scholar
  5. 5.
    Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) J Biol Chem 277:18849–18859PubMedCrossRefGoogle Scholar
  6. 6.
    Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) J Biol Chem 278:19416–19425PubMedCrossRefGoogle Scholar
  7. 7.
    Enguita FJ, Marçal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) J Biol Chem 279:23472–23476PubMedCrossRefGoogle Scholar
  8. 8.
    Bento I, Martins LO, Lopes GG, Arménia MA, Lindley PF (2005) Dalton Trans 21:3507–3513PubMedCrossRefGoogle Scholar
  9. 9.
    Xu F (1996) Biochemistry 35:7608–7614PubMedCrossRefGoogle Scholar
  10. 10.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605PubMedCrossRefGoogle Scholar
  11. 11.
    Karlin S, Zhu SZY, Karlin KD (1997) Proc Natl Acad Sci USA 94:14225–14230PubMedCrossRefGoogle Scholar
  12. 12.
    Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) Methods in enzymology, macromolecular crystallography, vol 276. Academic, New York, pp 307–326Google Scholar
  13. 13.
    CCP4 (1994) Acta Crystallogr Sect D 50:760–763CrossRefGoogle Scholar
  14. 14.
    Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Acta Crystallogr Sect D 55:247–255CrossRefGoogle Scholar
  15. 15.
    Emsley P, Cowtan K (2004) Acta Crystallogr Sect D 60:2126–2132CrossRefGoogle Scholar
  16. 16.
    Ramakrishnan C, Ramachandran GN (1965) Biophys J 5:909–933PubMedGoogle Scholar
  17. 17.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  18. 18.
    Schneider TR (2002) Acta Crystallogr Sect D 58:195–208CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  20. 20.
    Eftink MR (1994) Biophys J 66:482–501PubMedGoogle Scholar
  21. 21.
    Monsellier E, Bedouelle H (2005) Protein Eng Des Sel 18:445–456PubMedCrossRefGoogle Scholar
  22. 22.
    Brenner AJ, Harris ED (1995) Anal Biochem 226:80–84PubMedCrossRefGoogle Scholar
  23. 23.
    Ramachandran GN, Sasisekharan V (1968) Adv Protein Chem 23:283–437PubMedCrossRefGoogle Scholar
  24. 24.
    Ducros V, Brzozowski AM, Wilson KS, Ostergaard P, Schneider P, Svendson A, Davies GJ (2001) Acta Crystallogr Sect D 57:333–336CrossRefGoogle Scholar
  25. 25.
    Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Nat Struct Biol 9:601–605PubMedGoogle Scholar
  26. 26.
    Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) J Mol Biol 342:1519–1531PubMedCrossRefGoogle Scholar
  27. 27.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San CarlosGoogle Scholar
  28. 28.
    Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Biochem J 334:63–70PubMedGoogle Scholar
  29. 29.
    Xu F, Palmer AE, Yaver DS, Berka RM, Gambeta GA, Brown SH, Solomon EI (1999) J Biol Chem 274:12372–12375PubMedCrossRefGoogle Scholar
  30. 30.
    Palmer AE, Randall DW, Xu F, Solomon EI (1999) J Am Chem Soc 121:7138–7149CrossRefGoogle Scholar
  31. 31.
    Pascher T, Karlsson BG, Nordling M, Malmström BG, Vänngård T (1993) Eur J Biochem 212:289–296PubMedCrossRefGoogle Scholar
  32. 32.
    Hall JF, Kanbi LD, Strange RW, Hasnain SS (1999) Biochemistry 38:12675–12680PubMedCrossRefGoogle Scholar
  33. 33.
    Diederix REM, Canters GW, Dennison C (2000) Biochemistry 39:9551–9560PubMedCrossRefGoogle Scholar
  34. 34.
    Kataoka K, Kitagawa R, Inoue M, Naruse D, Sakurai T, Huang H-W (2005) Biochemistry 44:7004–7012PubMedCrossRefGoogle Scholar
  35. 35.
    Moser CC, Dutton PL (1996) In: Bendall DS (ed) Protein electron transfer. Bios Scientific, Oxford, pp 1–21Google Scholar
  36. 36.
    Warshel A (1978) Proc Natl Acad Sci USA 75:5250–5254PubMedCrossRefGoogle Scholar
  37. 37.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New YorkGoogle Scholar
  38. 38.
    Kelly SM, Price NC (1997) Biochim Biophys Acta 1338:161–185PubMedGoogle Scholar
  39. 39.
    Bonomo RP, Cennamo G, Purrello R, Santoro AM, Zappala RJ (2001) Inorg Chem 83:67–75Google Scholar
  40. 40.
    Agostinelli E, Cervoni L, Giartosio A, Morpurgo L (1995) Biochem J 306:697–702PubMedGoogle Scholar
  41. 41.
    Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Biochim Biophys Acta 1547:397–407PubMedGoogle Scholar
  42. 42.
    Fersht A (1999) Structure and mechanism in protein science. Freeman, New YorkGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • Paulo Durão
    • 1
  • Isabel Bento
    • 1
  • André T. Fernandes
    • 1
  • Eduardo P. Melo
    • 2
  • Peter F. Lindley
    • 1
  • Lígia O. Martins
    • 1
    Email author
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.Center of Molecular and Structural BiomedicineUniversidade do AlgarveFaroPortugal

Personalised recommendations