Advertisement

Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes

  • Igor Schepetkin
  • Andrei Potapov
  • Andrei Khlebnikov
  • Elena Korotkova
  • Anna Lukina
  • Galina Malovichko
  • Lilia Kirpotina
  • Mark T. Quinn
Original Paper

Abstract

Two bis(1-pyrazolyl)alkane ligands, bis(3,5-dimethyl-1-pyrazolyl)methane and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methane, and their copper(II) complexes, bis(3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL1(NO3)2] and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL2(NO3)2]·2H2O, were prepared. Physiochemical properties of the copper(II) complexes were studied by spectroscopic (UV–vis, IR, EPR) techniques and cyclic voltammetry. Spectroscopic analysis revealed a 1:1 stoichiometry of ligand:copper(II) ion and a bindentate coordination mode for the nitrate ions in both of the complexes. According to experimental and theoretical ab initio data, the copper(II) ion is located in an octahedral hexacoordinated environment. Both complexes were able to catalyze the dismutation of superoxide anion (\( {\text{O}}^{{\bullet - }}_{{\text{2}}} \)) (pH 7.5) and decomposition of H2O2 (pH 7.5) and peroxynitrite (pH 10.9). In addition, both complexes exhibited superoxide dismutase (SOD) like activity toward extracellular and intracellular reactive oxygen species produced by activated human neutrophils in whole blood. Thus, these complexes represent useful SOD mimetics with a broad range of antioxidant activity toward a variety of reactive oxidants.

Keywords

Pyrazole derivatives Copper complexes Superoxide dismutase mimetics Reactive oxygen species Peroxynitrite 

Notes

Acknowledgements

We would like to thank Mark Munro and Valentin Grachev, Department of Physics, Montana State University, Bozeman, MT, USA, for help with EPR measurements and EPR spectra analysis, respectively. This work was supported in part by Department of Defense grant W9113M-04-1-0001, NIH grants AR42426 and RR020185, and the Montana State University Agricultural Experimental Station. The US Army Space and Missile Defense Command, 64 Thomas Drive, Frederick, MD 21702, USA, is the awarding and administering acquisition office. The content of this report does not necessarily reflect the position or policy of the US Government.

References

  1. 1.
    Quinn MT, Gauss KA (2004) J Leukocyte Biol 76:760–781PubMedCrossRefGoogle Scholar
  2. 2.
    Fang FC (2004) Nat Rev Microbiol 2:820–832PubMedCrossRefGoogle Scholar
  3. 3.
    Serhan CN, Savill J (2005) Nat Immunol 6:1191–1197PubMedCrossRefGoogle Scholar
  4. 4.
    McCord JM, Edeas MA (2005) Biomed Pharmacother 59:139–142PubMedCrossRefGoogle Scholar
  5. 5.
    Fridovich I (1998) J Exp Biol 201:1203–1209PubMedGoogle Scholar
  6. 6.
    Matés JM, Pérez-Gómez C, De Castro IN (1999) Clin Biochem 32:595–603PubMedCrossRefGoogle Scholar
  7. 7.
    Pong K (2003) Expert Opin Biol Ther 3:127–139PubMedCrossRefGoogle Scholar
  8. 8.
    Tabbi G, Driessen WL, Reedijk J, Bonomo RP, Veldman N, Spek AL (1997) Inorg Chem 36:1168–1175PubMedCrossRefGoogle Scholar
  9. 9.
    Tian Y, Fang Y, Sun C, Shen W, Luo Q, Shen M (1993) Biochem Biophys Res Commun 191:646–653PubMedCrossRefGoogle Scholar
  10. 10.
    Trofimenko S (1993) Chem Rev 93:943–980CrossRefGoogle Scholar
  11. 11.
    Mukherjee R (2000) Coord Chem Rev 203:151–218CrossRefGoogle Scholar
  12. 12.
    Ballesteros P, Claramunt RM, Lopez MC, Elguero J, Gomezalarcon G (1988) Chem Pharm Bull (Tokyo) 36:2036–2041Google Scholar
  13. 13.
    Supuran CT, Claramunt RM, Lavandera JL, Elguero J (1996) Biol Pharm Bull 19:1417–1422PubMedGoogle Scholar
  14. 14.
    Broomhead JA, Camm G, Sterns M, Webster L (1998) Inorg Chim Acta 271:151–159CrossRefGoogle Scholar
  15. 15.
    Pettinari C, Pettinari R (2005) Coord Chem Rev 249:525–543Google Scholar
  16. 16.
    Hammes BS, Carrano CJ (2000) Chem Commun 17:1635–1636CrossRefGoogle Scholar
  17. 17.
    Beck A, Weibert B, Burzlaff N (2001) Eur J Inorg Chem 2:521–527CrossRefGoogle Scholar
  18. 18.
    Higgs TC, Carrano CJ (1997) Inorg Chem 36:291–297CrossRefGoogle Scholar
  19. 19.
    Higgs TC, Carrano CJ (1997) Inorg Chem 36:298–306CrossRefGoogle Scholar
  20. 20.
    Higgs TC, Ji D, Czernuscewicz RS, Carrano CJ (1998) Inorg Chim Acta 273:14–23CrossRefGoogle Scholar
  21. 21.
    Reedijk J, Verbiest J (1979) Transition Met Chem 4:239–243CrossRefGoogle Scholar
  22. 22.
    Mesubi MA, Anumba FO (1985) Transition Met Chem 10:5–8CrossRefGoogle Scholar
  23. 23.
    Potapov AS, Khlebnikov AI (2003) Izv Vuzov Ser Khim Khim Tekhnol 7:66–71Google Scholar
  24. 24.
    Patel RN, Singh N, Shukla KK, Gundla VL, Chauhan UK (2005) J Inorg Biochem 99:651–663PubMedCrossRefGoogle Scholar
  25. 25.
    Hypercube (2002) HyperChem computational chemistry: molecular visualization and simulation, release 7 for Windows. Hypercube, EdmontonGoogle Scholar
  26. 26.
    Huguet AI, Manez S, Alcaraz MJ (1990) Z Naturforsch 45:19–24Google Scholar
  27. 27.
    Bielski BHJ, Richter HW (1977) J Am Chem Soc 99:3019–3023CrossRefGoogle Scholar
  28. 28.
    Durot S, Policar C, Cisnetti F, Lambert F, Renault JP, Pelosi G, Blain G, Korri-Youssoufi H, Mahy JP (2005) Eur J Inorg Chem 17:3513–3523CrossRefGoogle Scholar
  29. 29.
    Bindoli A, Valente M, Cavallini L (1985) Pharmacol Res Commun 17:831–839PubMedCrossRefGoogle Scholar
  30. 30.
    Korotkova EI, Karbainov YA, Avramchik OA (2003) Anal Bioanal Chem 375:465–468PubMedGoogle Scholar
  31. 31.
    Imada I, Sato EF, Miyamoto M, Ichimori Y, Minamiyama Y, Konaka R, Inoue M (1999) Anal Biochem 271:53–58PubMedCrossRefGoogle Scholar
  32. 32.
    Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C (2003) Arthritis Rheum 48:3151–3158PubMedCrossRefGoogle Scholar
  33. 33.
    Bohle DS, Glassbrenner PA, Hansert B (1996) Methods Enzymol 269:302–311PubMedGoogle Scholar
  34. 34.
    Glebska J, Koppenol WH (2003) Free Radic Biol Med 35:676–682PubMedCrossRefGoogle Scholar
  35. 35.
    Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) J Immunol Methods 160:81–88PubMedCrossRefGoogle Scholar
  36. 36.
    Julia S, Sala P, Delmazo J, Sancho M, Ochoa C, Elguero J, Fayet JP, Vertut MC (1982) J Heterocycl Chem 19:1141–1145CrossRefGoogle Scholar
  37. 37.
    Claramunt RM, Hernandez H, Elguero J, Julia S (1983) Bull Soc Chim Fr 1–2:5–10Google Scholar
  38. 38.
    Tretyakov EV, Vasilevsky SF (1995) Mendeleev Commun 6:233–234CrossRefGoogle Scholar
  39. 39.
    Nakamoto K (1986) Infrared spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  40. 40.
    Lever ABP (1984) Inorganic electronic spectra. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Zhang L-Z, Ma SL, Shen A-Y, Fu M, Zhang L-J, Liu X (2003) Pol J Chem 77:837–844Google Scholar
  42. 42.
    Li D, Li S, Yang D, Yu J, Huang J, Li Y, Tang W (2003) Inorg Chem 42:6071–6080PubMedCrossRefGoogle Scholar
  43. 43.
    Bertini I, Gatteschi D, Scozzafava A (1979) Coord Chem Rev 29:67–84CrossRefGoogle Scholar
  44. 44.
    Schuitema AM, Engelen M, Koval IA, Gorter S, Driessen WL, Reedijk J (2001) Inorg Chim Acta 324:57–64CrossRefGoogle Scholar
  45. 45.
    Jitsukawa K, Harata M, Arii H, Sakurai H, Masuda H (2001) Inorg Chim Acta 324:108–116CrossRefGoogle Scholar
  46. 46.
    Filimonov VD, Karbainov YA, Korotkova EI, Bashkatova NV, Volovodenko AV (2002) Izv Vuzov Ser Khim Khim Tekhnol 3:75–79Google Scholar
  47. 47.
    Thomas CE, Ohlweiler DF, Carr AA, Nieduzak TR, Hay DA, Adams G, Vaz R, Bernotas RC (1996) J Biol Chem 271:3097–3104PubMedCrossRefGoogle Scholar
  48. 48.
    Policar C, Durot S, Lambert F, Cesario M, Ramiandrasoa F, Morgenstern-Badarau I (2001) Eur J Inorg Chem 7:1807–1818CrossRefGoogle Scholar
  49. 49.
    Weser U, Schubotz LM (1981) J Mol Catal 13:249–261CrossRefGoogle Scholar
  50. 50.
    Korytowski W, Sarna T (1990) J Biol Chem 265:12410–12416PubMedGoogle Scholar
  51. 51.
    Jezowska-Bojczuk M, Lesniak W, Bal W, Kozlowski H, Gatner K, Jezierski A, Sobczak J, Mangani S, Meyer-Klaucke W (2001) Chem Res Toxicol 14:1353–1362PubMedCrossRefGoogle Scholar
  52. 52.
    Salem IA, El-Sheikh MY, Younes AAA, Zaki AB (2000) Int J Chem Kinet 32:667–675CrossRefGoogle Scholar
  53. 53.
    Ueda J, Takai M, Shimazu Y, Ozawa T (1998) Arch Biochem Biophys 357:231–239PubMedCrossRefGoogle Scholar
  54. 54.
    Yim MB, Chock PB, Stadtman ER (1990) Proc Natl Acad Sci USA 87:5006–5010PubMedCrossRefGoogle Scholar
  55. 55.
    Li ZP, Fan SS, Zhang LN, Wang FC (2004) Anal Sci 20:1327–1331PubMedCrossRefGoogle Scholar
  56. 56.
    Tsukagoshi K, Sumiyama M, Nakajima R, Nakayama M, Maeda M (1998) Anal Sci 14:409–412CrossRefGoogle Scholar
  57. 57.
    Hodgson EK, Fridovich I (1975) Biochemistry 14:5294–5299PubMedCrossRefGoogle Scholar
  58. 58.
    Kladna A, boul-Enein HY, Kruk I (2003) Free Radic Biol Med 34:1544–1554PubMedCrossRefGoogle Scholar
  59. 59.
    Sohn HY, Gloe T, Keller M, Schoenafinger K, Pohl U (1999) J Vasc Res 36:456–464PubMedCrossRefGoogle Scholar
  60. 60.
    Beckman JS, Koppenol WH (1996) Am J Physiol Cell Physiol 271:C1424–C1437Google Scholar
  61. 61.
    Hughes MN, Nicklin HG, Sackrule WA (1971) J Am Chem Soc 3722–3725Google Scholar
  62. 62.
    AlAjlouni AM, Gould ES (1997) Inorg Chem 36:362–365CrossRefGoogle Scholar
  63. 63.
    Babich OA, Gould ES (2002) Res Chem Intermed 28:79–85CrossRefGoogle Scholar
  64. 64.
    Jourd’heuil D, Jourd’heuil FL, Kutchukian PS, Musah RA, Wink DA, Grisham MB (2001) J Biol Chem 276:28799–28805PubMedCrossRefGoogle Scholar
  65. 65.
    Wrona M, Patel K, Wardman P (2005) Free Radic Biol Med 38:262–270PubMedCrossRefGoogle Scholar
  66. 66.
    Crow JP (1999) Arch Biochem Biophys 371:41–52PubMedCrossRefGoogle Scholar
  67. 67.
    Carreras MC, Pargament GA, Catz SD, Poderoso JJ, Boveris A (1994) FEBS Lett 341:65–68PubMedCrossRefGoogle Scholar
  68. 68.
    Fattman CL, Schaefer LM, Oury TD (2003) Free Radic Biol Med 35:236–256PubMedCrossRefGoogle Scholar
  69. 69.
    Wada K, Fujibayashi Y, Yokoyama A (1994) Arch Biochem Biophys 310:1–5PubMedCrossRefGoogle Scholar
  70. 70.
    Lojek A, Kubala L, Cizova H, Ciz M (2002) Luminescence 17:1–4PubMedCrossRefGoogle Scholar
  71. 71.
    Granfeldt D, Dahlgren C (2001) Inflammation 25:165–169PubMedCrossRefGoogle Scholar
  72. 72.
    Bassoe CF, Li NY, Ragheb K, Lawler G, Sturgis J, Robinson JP (2003) Cytometry 51B:21–29CrossRefGoogle Scholar
  73. 73.
    Riber U, Lind P (1999) Vet Immunol Immunopathol 67:259–270PubMedCrossRefGoogle Scholar
  74. 74.
    Czapski G, Goldstein S (1990) Adv Exp Med Biol 264:45–50PubMedGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • Igor Schepetkin
    • 1
  • Andrei Potapov
    • 2
  • Andrei Khlebnikov
    • 2
  • Elena Korotkova
    • 3
  • Anna Lukina
    • 3
  • Galina Malovichko
    • 4
  • Lilia Kirpotina
    • 1
  • Mark T. Quinn
    • 1
  1. 1.Department of Veterinary Molecular BiologyMontana State UniversityBozemanUSA
  2. 2.Department of ChemistryAltai State Technical UniversityBarnaulRussia
  3. 3.Department of Chemical TechnologyTomsk Polytechnic UniversityTomskRussia
  4. 4.Department of PhysicsMontana State UniversityBozemanUSA

Personalised recommendations