Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B

  • Meike Goenrich
  • Evert C. Duin
  • Felix Mahlert
  • Rudolf K. ThauerEmail author
Original Article


Methyl-coenzyme M reductase (MCR) catalyses the formation of methane from methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) in methanogenic archaea. The enzyme has an α2β2γ2 subunit structure forming two structurally interlinked active sites each with a molecule F430 as a prosthetic group. The nickel porphinoid must be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-based electron paramagnetic resonance (EPR) signal and a UV–vis spectrum with an absorption maximum at 385 nm. This state is called the MCR-red1 state. In the presence of coenzyme M (HS-CoM) and coenzyme B the MCR-red1 state is in part converted reversibly into the MCR-red2 state, which shows a rhombic Ni(I)-based EPR signal and a UV–vis spectrum with an absorption maximum at 420 nm. We report here for MCR from Methanothermobacter marburgensis that the MCR-red2 state is also induced by several coenzyme B analogues and that the degree of induction by coenzyme B is temperature-dependent. When the temperature was lowered below 20°C the percentage of MCR in the red2 state decreased and that in the red1 state increased. These changes with temperature were fully reversible. It was found that at most 50% of the enzyme was converted to the MCR-red2 state under all experimental conditions. These findings indicate that in the presence of both coenzyme M and coenzyme B only one of the two active sites of MCR can be in the red2 state (half-of-the-sites reactivity). On the basis of this interpretation a two-stroke engine mechanism for MCR is proposed.


Methyl-coenzyme M reductase Nickel enzymes Factor F430 Electron paramagnetic resonance spectroscopy Half-of-the-sites reactivity Mechanism of methane formation 



Electron paramagnetic resonance


Methyl-coenzyme M reductase


Methyl-coenzyme M


Coenzyme M


Coenzyme B


Active MCR exhibiting the EPR red1 signals


MCR-red1 in the presence of 10 mM coenzyme M


MCR exhibiting the EPR red2 signal


MCR exhibiting both the EPR red1 and red2 signal


MCR exhibiting the EPR signals ox1, ox2 or ox3





This work was supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and by a fellowship from the Claussen-Simon-Stiftung (M.G.). We thank Antonio Pierik for his help in measuring the room temperature EPR spectra.


  1. 1.
    Thauer RK (1998) Microbiology 144:2377–2406Google Scholar
  2. 2.
    Wolfe RS (2004) ASM News 70:15–18Google Scholar
  3. 3.
    Thauer RK, Jungermann K, Decker K (1977) Bact Rev 41:100–180Google Scholar
  4. 4.
    Sauer K, Thauer RK (1997) Eur J Biochem 249:280–285Google Scholar
  5. 5.
    Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, Greiner G, Beifuss U (2003) Chembiochem 4:333–335Google Scholar
  6. 6.
    Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Appl Environ Microbiol 69:5483–5491Google Scholar
  7. 7.
    Krüger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Bocher R, Thauer RK, Shima S (2003) Nature 426:878–881Google Scholar
  8. 8.
    Piskorski R, Jaun B (2003) J Am Chem Soc 125:13120–13125Google Scholar
  9. 9.
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462Google Scholar
  10. 10.
    Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) J Mol Biol 303:329–344Google Scholar
  11. 11.
    Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) J Mol Biol 309:315–330Google Scholar
  12. 12.
    Grabarse W, Shima S, Mahlert F, Duin EC, Thauer RK, Ermler U (2001) Methyl-coenzyme M reductase. Wiley, ChichesterGoogle Scholar
  13. 13.
    Selmer T, Kahnt J, Goubeaud M, Shima S, Grabarse W, Ermler U, Thauer RK (2000) J Biol Chem 275:3755–3760Google Scholar
  14. 14.
    Duin EC, Signor L, Piskorski R, Mahlert F, Clay MD, Goenrich M, Thauer RK, Jaun B, Johnson MK (2004) J Biol Inorg Chem 9:563–576Google Scholar
  15. 15.
    Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114Google Scholar
  16. 16.
    Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:101–112Google Scholar
  17. 17.
    Goenrich M, Mahlert F, Duin EC, Bauer C, Jaun B, Thauer RK (2004) J Biol Inorg Chem 9:691–705Google Scholar
  18. 18.
    Finazzo C, Harmer J, Bauer C, Jaun B, Duin EC, Mahlert F, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Am Chem Soc 125:4988–4989Google Scholar
  19. 19.
    Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Biol Inorg Chem 8:586–593Google Scholar
  20. 20.
    Jaun B (1990) Helv Chim Acta 73:2209–2217Google Scholar
  21. 21.
    Berkessel A (1991) Bioorg Chem 19:101–115Google Scholar
  22. 22.
    Signor L, Knuppe C, Hug R, Schweizer B, Pfaltz A, Jaun B (2000) Chem Eur J 6:3508–3516Google Scholar
  23. 23.
    Horng YC, Becker DF, Ragsdale SW (2001) Biochemistry 40:12875–12885Google Scholar
  24. 24.
    Pelmenschikov V, Blomberg MR, Siegbahn PE, Crabtree RH (2002) J Am Chem Soc 124:4039–4049Google Scholar
  25. 25.
    Pelmenschikov V, Siegbahn PE (2003) J Biol Inorg Chem 8:653–662Google Scholar
  26. 26.
    Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871–877Google Scholar
  27. 27.
    Bonacker LG, Baudner S, Thauer RK (1992) Eur J Biochem 206:87–92Google Scholar
  28. 28.
    Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587–595Google Scholar
  29. 29.
    Wasserfallen A, Nolling J, Pfister P, Reeve J, Conway de Macario E (2000) Int J Syst Evol Microbiol 50(Pt 1):43–53Google Scholar
  30. 30.
    Gunsalus RP, Romesser JA, Wolfe RS (1978) Biochemistry 17:2374–2377Google Scholar
  31. 31.
    Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) FEBS Lett 214:265–268Google Scholar
  32. 32.
    Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem 172:669–677Google Scholar
  33. 33.
    Olson KD, McMahon CW, Wolfe RS (1991) Proc Natl Acad Sci USA 88:4099–4103Google Scholar
  34. 34.
    Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:500–513Google Scholar
  35. 35.
    Bradford MM (1976) Anal Biochem 72:248–254Google Scholar
  36. 36.
    Levitzki A, Stallcup WB, Koshland DE (1971) Biochemistry 10:3371–3378Google Scholar
  37. 37.
    Walsh C (1979) Enzymatic reaction mechanisms. In: Bartlett AC, McCombs LW (eds) Enzymatic reaction mechanisms. W. H. Freeman and Company, San Francisco, CA, USAGoogle Scholar
  38. 38.
    Khailova LS, Korochkina LG (1985) Biochem Int 11:509–516Google Scholar
  39. 39.
    Zhou J, Weiner H (2000) Biochemistry 39:12019–12024Google Scholar
  40. 40.
    Weiner H, Wei B, Zhou J (2001) Chem Biol Interact 130–132:47–56Google Scholar
  41. 41.
    Craft JL, Horng YC, Ragsdale SW, Brunold TC (2004) J Biol Inorg Chem 9:77–89Google Scholar
  42. 42.
    Craft JL, Horng YC, Ragsdale SW, Brunold TC (2004) J Am Chem Soc 126:4068–4069Google Scholar
  43. 43.
    Duin EC, Cosper NJ, Mahlert F, Thauer RK, Scott RA (2003) J Biol Inorg Chem 8:141–148Google Scholar
  44. 44.
    Lorimer G (1997) Nature 388:720–721, 723Google Scholar
  45. 45.
    Hutschenreiter S, Tinazli A, Model K, Tampe R (2004) EMBO J 23:2488–2497Google Scholar
  46. 46.
    Ellermann J, Kobelt A, Pfaltz A, Thauer RK (1987) FEBS Lett 220:358–362Google Scholar
  47. 47.
    Olson KD, Chmurkowska-Cichowlas L, McMahon CW, Wolfe RS (1992) J Bacteriol 174:1007–1012Google Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • Meike Goenrich
    • 1
  • Evert C. Duin
    • 2
  • Felix Mahlert
    • 1
  • Rudolf K. Thauer
    • 1
    Email author
  1. 1.Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich BiologiePhilipps-UniversitätMarburgGermany
  2. 2.Department of Chemistry and BiochemistryAuburn UniversityUSA

Personalised recommendations