JBIC Journal of Biological Inorganic Chemistry

, Volume 10, Issue 4, pp 333–342

Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B

  • Meike Goenrich
  • Evert C. Duin
  • Felix Mahlert
  • Rudolf K. Thauer
Original Article

Abstract

Methyl-coenzyme M reductase (MCR) catalyses the formation of methane from methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) in methanogenic archaea. The enzyme has an α2β2γ2 subunit structure forming two structurally interlinked active sites each with a molecule F430 as a prosthetic group. The nickel porphinoid must be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-based electron paramagnetic resonance (EPR) signal and a UV–vis spectrum with an absorption maximum at 385 nm. This state is called the MCR-red1 state. In the presence of coenzyme M (HS-CoM) and coenzyme B the MCR-red1 state is in part converted reversibly into the MCR-red2 state, which shows a rhombic Ni(I)-based EPR signal and a UV–vis spectrum with an absorption maximum at 420 nm. We report here for MCR from Methanothermobacter marburgensis that the MCR-red2 state is also induced by several coenzyme B analogues and that the degree of induction by coenzyme B is temperature-dependent. When the temperature was lowered below 20°C the percentage of MCR in the red2 state decreased and that in the red1 state increased. These changes with temperature were fully reversible. It was found that at most 50% of the enzyme was converted to the MCR-red2 state under all experimental conditions. These findings indicate that in the presence of both coenzyme M and coenzyme B only one of the two active sites of MCR can be in the red2 state (half-of-the-sites reactivity). On the basis of this interpretation a two-stroke engine mechanism for MCR is proposed.

Keywords

Methyl-coenzyme M reductase Nickel enzymes Factor F430 Electron paramagnetic resonance spectroscopy Half-of-the-sites reactivity Mechanism of methane formation 

Abbreviations

EPR

Electron paramagnetic resonance

MCR

Methyl-coenzyme M reductase

CH3-S-CoM

Methyl-coenzyme M

HS-CoM

Coenzyme M

HS-CoB

Coenzyme B

MCR-red1

Active MCR exhibiting the EPR red1 signals

MCR-red1c

MCR-red1 in the presence of 10 mM coenzyme M

MCR-red2

MCR exhibiting the EPR red2 signal

MCR-red1/2

MCR exhibiting both the EPR red1 and red2 signal

MCR-ox

MCR exhibiting the EPR signals ox1, ox2 or ox3

Tris

Tris(hydroxymethyl)aminomethane

References

  1. 1.
    Thauer RK (1998) Microbiology 144:2377–2406Google Scholar
  2. 2.
    Wolfe RS (2004) ASM News 70:15–18Google Scholar
  3. 3.
    Thauer RK, Jungermann K, Decker K (1977) Bact Rev 41:100–180Google Scholar
  4. 4.
    Sauer K, Thauer RK (1997) Eur J Biochem 249:280–285Google Scholar
  5. 5.
    Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, Greiner G, Beifuss U (2003) Chembiochem 4:333–335Google Scholar
  6. 6.
    Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Appl Environ Microbiol 69:5483–5491Google Scholar
  7. 7.
    Krüger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Bocher R, Thauer RK, Shima S (2003) Nature 426:878–881Google Scholar
  8. 8.
    Piskorski R, Jaun B (2003) J Am Chem Soc 125:13120–13125Google Scholar
  9. 9.
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462Google Scholar
  10. 10.
    Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) J Mol Biol 303:329–344Google Scholar
  11. 11.
    Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) J Mol Biol 309:315–330Google Scholar
  12. 12.
    Grabarse W, Shima S, Mahlert F, Duin EC, Thauer RK, Ermler U (2001) Methyl-coenzyme M reductase. Wiley, ChichesterGoogle Scholar
  13. 13.
    Selmer T, Kahnt J, Goubeaud M, Shima S, Grabarse W, Ermler U, Thauer RK (2000) J Biol Chem 275:3755–3760Google Scholar
  14. 14.
    Duin EC, Signor L, Piskorski R, Mahlert F, Clay MD, Goenrich M, Thauer RK, Jaun B, Johnson MK (2004) J Biol Inorg Chem 9:563–576Google Scholar
  15. 15.
    Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114Google Scholar
  16. 16.
    Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:101–112Google Scholar
  17. 17.
    Goenrich M, Mahlert F, Duin EC, Bauer C, Jaun B, Thauer RK (2004) J Biol Inorg Chem 9:691–705Google Scholar
  18. 18.
    Finazzo C, Harmer J, Bauer C, Jaun B, Duin EC, Mahlert F, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Am Chem Soc 125:4988–4989Google Scholar
  19. 19.
    Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Biol Inorg Chem 8:586–593Google Scholar
  20. 20.
    Jaun B (1990) Helv Chim Acta 73:2209–2217Google Scholar
  21. 21.
    Berkessel A (1991) Bioorg Chem 19:101–115Google Scholar
  22. 22.
    Signor L, Knuppe C, Hug R, Schweizer B, Pfaltz A, Jaun B (2000) Chem Eur J 6:3508–3516Google Scholar
  23. 23.
    Horng YC, Becker DF, Ragsdale SW (2001) Biochemistry 40:12875–12885Google Scholar
  24. 24.
    Pelmenschikov V, Blomberg MR, Siegbahn PE, Crabtree RH (2002) J Am Chem Soc 124:4039–4049Google Scholar
  25. 25.
    Pelmenschikov V, Siegbahn PE (2003) J Biol Inorg Chem 8:653–662Google Scholar
  26. 26.
    Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871–877Google Scholar
  27. 27.
    Bonacker LG, Baudner S, Thauer RK (1992) Eur J Biochem 206:87–92Google Scholar
  28. 28.
    Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587–595Google Scholar
  29. 29.
    Wasserfallen A, Nolling J, Pfister P, Reeve J, Conway de Macario E (2000) Int J Syst Evol Microbiol 50(Pt 1):43–53Google Scholar
  30. 30.
    Gunsalus RP, Romesser JA, Wolfe RS (1978) Biochemistry 17:2374–2377Google Scholar
  31. 31.
    Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) FEBS Lett 214:265–268Google Scholar
  32. 32.
    Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem 172:669–677Google Scholar
  33. 33.
    Olson KD, McMahon CW, Wolfe RS (1991) Proc Natl Acad Sci USA 88:4099–4103Google Scholar
  34. 34.
    Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:500–513Google Scholar
  35. 35.
    Bradford MM (1976) Anal Biochem 72:248–254Google Scholar
  36. 36.
    Levitzki A, Stallcup WB, Koshland DE (1971) Biochemistry 10:3371–3378Google Scholar
  37. 37.
    Walsh C (1979) Enzymatic reaction mechanisms. In: Bartlett AC, McCombs LW (eds) Enzymatic reaction mechanisms. W. H. Freeman and Company, San Francisco, CA, USAGoogle Scholar
  38. 38.
    Khailova LS, Korochkina LG (1985) Biochem Int 11:509–516Google Scholar
  39. 39.
    Zhou J, Weiner H (2000) Biochemistry 39:12019–12024Google Scholar
  40. 40.
    Weiner H, Wei B, Zhou J (2001) Chem Biol Interact 130–132:47–56Google Scholar
  41. 41.
    Craft JL, Horng YC, Ragsdale SW, Brunold TC (2004) J Biol Inorg Chem 9:77–89Google Scholar
  42. 42.
    Craft JL, Horng YC, Ragsdale SW, Brunold TC (2004) J Am Chem Soc 126:4068–4069Google Scholar
  43. 43.
    Duin EC, Cosper NJ, Mahlert F, Thauer RK, Scott RA (2003) J Biol Inorg Chem 8:141–148Google Scholar
  44. 44.
    Lorimer G (1997) Nature 388:720–721, 723Google Scholar
  45. 45.
    Hutschenreiter S, Tinazli A, Model K, Tampe R (2004) EMBO J 23:2488–2497Google Scholar
  46. 46.
    Ellermann J, Kobelt A, Pfaltz A, Thauer RK (1987) FEBS Lett 220:358–362Google Scholar
  47. 47.
    Olson KD, Chmurkowska-Cichowlas L, McMahon CW, Wolfe RS (1992) J Bacteriol 174:1007–1012Google Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • Meike Goenrich
    • 1
  • Evert C. Duin
    • 2
  • Felix Mahlert
    • 1
  • Rudolf K. Thauer
    • 1
  1. 1.Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich BiologiePhilipps-UniversitätMarburgGermany
  2. 2.Department of Chemistry and BiochemistryAuburn UniversityUSA

Personalised recommendations