Advertisement

Synthesis of vanadium(IV,V) hydroxamic acid complexes and in vivo assessment of their insulin-like activity

  • Mamoru Haratake
  • Masashi Fukunaga
  • Masahiro Ono
  • Morio Nakayama
Original Article

Abstract

We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.

Keywords

Vanadium Oxidation state Hydroxamic acid Ligand Glucose-lowering 

Abbreviations

BHA

Benzohydroxamic acid

BMOV

Bis(maltolato)oxovanadium(IV)

HA

Hydroxamic acid

i.p.

Intraperitoneal

STZ

Streptozotocin

THA

p-Toluylhydroxamic acid

References

  1. 1.
    Shechter Y, Karlish SJD (1980) Nature 284:556–558PubMedGoogle Scholar
  2. 2.
    Heyliger CE, Tahiliani AG, McNeill JH (1985) Science 227:1474–1477Google Scholar
  3. 3.
    Thompson KH, McNeill JH, Orvig C (1999) Chem Rev 99:2561–2571CrossRefPubMedGoogle Scholar
  4. 4.
    Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) J Biol Chem 262:6658–6662Google Scholar
  5. 5.
    Goldwaster I, Gefel D, Gershonov E, Fridkin M, Shechter Y (2000) J Inorg Biochem 80:21–25Google Scholar
  6. 6.
    Macara IG (1980) Trends Biochem Sci 5:92–94Google Scholar
  7. 7.
    Kustin K, Robinson WE (1995) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 31. Marcel Dekker, pp 526–527Google Scholar
  8. 8.
    Patterson BW, Hansard II SL, Ammerman CB, Henry PR, Zech LA, Fisher WR (1986) Am J Physiol 251:R325–R332Google Scholar
  9. 9.
    Chasteen ND, Grady JK, Holloway CE (1986) Inorg Chem 25:2754–2760Google Scholar
  10. 10.
    Chasteen ND, Lord EM, Thompson HJ, Grady JK (1986) Biochim Biophys Acta 884:84–92Google Scholar
  11. 11.
    Elberg G, Li J, Shechter Y (1994) J Biol Chem 269:9521–9527Google Scholar
  12. 12.
    Tolman EL, Barris E, Burns M, Pansini A, Partridge R (1979) Life Sci 25:1159–1164CrossRefGoogle Scholar
  13. 13.
    Swarup G, Cohen S, Garbers DI (1982) Biochem Biophys Res Commun 107:1104–1109Google Scholar
  14. 14.
    Shisheva A, Shechter Y (1992) Biochemistry 31:8059–8063Google Scholar
  15. 15.
    Crans DC (2000) J Inorg Biochem 80:123–131Google Scholar
  16. 16.
    Shechter Y (1998) Lett Pept Sci 5:319–322Google Scholar
  17. 17.
    Willsky GR, Goldfine AB, Kostyniak PJ, McNeill JH, Yang LQ, Khan HR, Crans DC (2001) J Inorg Biochem 85:33–42Google Scholar
  18. 18.
    Ryan DE (1960) Analyst 85:569–574Google Scholar
  19. 19.
    Wise WM, Brandt WW (1954) J Am Chem Soc 77:1085–1086Google Scholar
  20. 20.
    Fisher DC, Barclay-Peet SJ, Baalfe CA, Raymond KN (1989) Inorg Chem 28:4399–4406Google Scholar
  21. 21.
    Ito M, Kondo Y, Nakatani A, Hayashi K, Naruse A (2001) Environ Toxicol Pharmacol 9:71–78Google Scholar
  22. 22.
    Richon VM, Zhou X, Rifkind RA, Marks PA (2001) Blood Cells Mol Dis 27:260–264Google Scholar
  23. 23.
    Supuran CT, Scozzafava A, Casini A (2003) Med Res Rev 23 :146–189CrossRefPubMedGoogle Scholar
  24. 24.
    Bell JH, Pratt RF (2002) Inorg Chem 41:2747–2753Google Scholar
  25. 25.
    Setyawati IA, Thompson KH, Yuen VG, Sun Y, Battell M, Lyster DM, Vo C, Ruth TJ, Zeisler S, McNeill JH, Orvig C (1998) J Appl Physiol 84:569–575Google Scholar
  26. 26.
    Thompson KH, Tsukada Y, Xu Z, Battell M, McNeill JH, Orvig C (2002) Biol Trace Elem Res 86:31–44Google Scholar
  27. 27.
    Fantus IG, Tsiami E (1998) Mol Cell Biochem 182:109–119Google Scholar
  28. 28.
    Fantus IG, Ahmad F, Deragon G (1990) Endocrinology 127:2716–2725Google Scholar
  29. 29.
    Rehder D, Pessoa JC, Geraldes CFGC, Castro MMCA, Kabanson T, Kiss T, Meier B, Micera G, Pettersson L, Rangel M, Salifoglou A, Turel I, Wang D (2002) J Biol Inorg Chem 7:384–396Google Scholar
  30. 30.
    Goldwaser I, Li J, Gershonov E, Armoni M, Karnieli E, Fridkin M, Shechter Y (1999) J Biol Chem 274:26617–26624Google Scholar
  31. 31.
    Goldwaser I, Qian S, Gershonov E, Fridkin M, Shechter Y (2000) Mol Pharmacol 58:738–746Google Scholar
  32. 32.
    Bhura DC, Tandon SG (1971) Anal Chim Acta 53:379–386Google Scholar
  33. 33.
    Shechter Y, Shisheva A, Lazar R, Libman J, Shanzer A (1992) Biochemistry 31:2063–2068Google Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • Mamoru Haratake
    • 1
  • Masashi Fukunaga
    • 1
  • Masahiro Ono
    • 1
  • Morio Nakayama
    • 1
  1. 1.Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan

Personalised recommendations