JBIC Journal of Biological Inorganic Chemistry

, Volume 10, Issue 2, pp 167–180

Modulation of zinc- and cobalt-binding affinities through changes in the stability of the zinc ribbon protein L36

  • Wenpeng Kou
  • Harsha S. Kolla
  • Alfonso Ortiz-Acevedo
  • Donovan C. Haines
  • Matthew Junker
  • Gregg R. Dieckmann
Original Article


Cysteine-rich Zn(II)-binding sites in proteins serve two distinct functions: to template or stabilize specific protein folds, and to facilitate chemical reactions such as alkyl transfers. We are interested how the protein environment controls metal site properties, specifically, how naturally occurring tetrahedral Zn(II) sites are affected by the surrounding protein. We have studied the Co(II)- and Zn(II)-binding of a series of derivatives of L36, a small zinc ribbon protein containing a (Cys)3His metal coordination site. UV–vis spectroscopy was used to monitor metal binding by peptides at pH 6.0. For all derivatives, the following trends were observed: (1) Zn(II) binds tighter than Co(II), with an average KAZn/KACo of 2.8(±2.0)×103; (2) mutation of the metal-binding ligand His32 to Cys decreases the affinity of L36 derivatives for both metals; (3) a Tyr24 to Trp mutation in the β-sheet hydrophobic cluster increases KAZn and KACo; (4) mutation in the β-hairpin turn, His20 to Asn generating an Asn-Gly turn, also increases KAZn and KACo; (5) the combination of His20 to Asn and Tyr24 to Trp mutations also increases KAZn and KACo, but the increments versus C3H are less than those of the single mutations. Furthermore, circular dichroism, size-exclusion chromatography, and 1D and 2D 1H NMR experiments show that the mutations do not change the overall fold or association state of the proteins. L36, displaying Co(II)- and Zn(II)-binding sensitivity to various sequence mutations without undergoing a change in protein structure, can therefore serve as a useful model system for future structure/reactivity studies.


Zinc ribbon Metal binding constants Total correlation spectroscopy Nuclear Overhauser enhancement spectroscopy Thiolate-rich zinc site 



Circular dichroism




5,5′-Dithiobis(2-nitrobenzoic acid)


Electrospray ionization mass spectrometry




N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid


High performance liquid chromatography


Inductively coupled plasma mass spectrometry


Ligand field stabilization energy


Ligand-to-metal charge transfer


Nuclear Overhauser enhancement spectroscopy


Size-exclusion chromatography


Tris(2-carboxyethyl)phosphine hydrochloride


Trifluoroacetic acid


Total correlation spectroscopy

Supplementary material

775_2005_625_ESM_supp.pdf (2.8 mb)
(PDF 2.9 MB)


  1. 1.
    Vallee BL, Auld DS (1990) Biochem 29:5647–5659PubMedGoogle Scholar
  2. 2.
    Vallee BL, Auld DS (1993) Acc Chem Res 26:543–551Google Scholar
  3. 3.
    Matthews RG, Drummond JT (1990) Chem Rev 90:1275–1290Google Scholar
  4. 4.
    Hightower KE, Fierke CA (1999) Curr Opin Chem Biol 3:176–181Google Scholar
  5. 5.
    Myers LC, Terranova MP, Nash HM, Markus MA, Verdine GL (1992) Biochemistry 31:4541–4547Google Scholar
  6. 6.
    Myers LC, Terranova MP, Ferentz AE, Wagner G, Verdine GL (1993) Science 261:1164–1167Google Scholar
  7. 7.
    Goulding CW, Matthews RG (1997) Biochemistry 36:15749–15757Google Scholar
  8. 8.
    Zhou ZS, Peariso K, Penner-Hahn JE, Matthews RG (1999) Biochemistry 38: 15915–15926Google Scholar
  9. 9.
    Park HW, Boduluri SR, Moomaw JF, Casey PJ, Beese LS (1997) Science 275:1800–1804Google Scholar
  10. 10.
    Allen JR, Clark DD, Krum JG, Ensign SA (1999) Proc Natl Acad Sci USA 96:8432–8437Google Scholar
  11. 11.
    Topol IA, Casas-Finet JR, Gussio R, Burt SK, Erickson JW (1998) J Mol Struct 423:13–28Google Scholar
  12. 12.
    Maynard AT, Covell DG (2001) J Am Chem Soc 123:1047–1058Google Scholar
  13. 13.
    Wilker JJ, Lippard SJ (1997) Inorg Chem 36:969–978Google Scholar
  14. 14.
    Brand U, Rombach M, Vehrenkamp H (1998) Chem Commun 24:2717–2718Google Scholar
  15. 15.
    Grapperhaus CA, Tuntulani T, Reibenspies JH, Darensbourg MY (1998) Inorg Chem 37:4052–4058Google Scholar
  16. 16.
    Warthen CR, Hammes BS, Carrano CJ, Crans DC (2001) J Biol Inorg Chem 6:82–90Google Scholar
  17. 17.
    Kiefer LL, Fierke CA (1994) Biochemistry 33:15233–15240Google Scholar
  18. 18.
    Regan L, Clarke ND (1990) Biochemistry 29:10878–10883Google Scholar
  19. 19.
    Krizek BA, Merkle DL, Berg JM (1993) Inorg Chem 32:937–940Google Scholar
  20. 20.
    Guo J, Giedroc DP (1997) Biochemistry 36:730–742Google Scholar
  21. 21.
    Urlaub H, Kruft V, Bischof O, Muller EC, Wittmann-Liebold B (1995) EMBO J 14:4578–4588Google Scholar
  22. 22.
    Wittmann-Liebold B, Uhlein M, Urlaub H, Muller EC, Otto A, Bischof O (1995) Biochem Cell Biol 73:1187–1197Google Scholar
  23. 23.
    Härd T, Rak A, Allard P, Kloo L, Garber M (2000) J Mol Biol 296:169–180Google Scholar
  24. 24.
    Omichinski JG, Clore GM, Schaad O, Felsenfeld G, Trainor C, Appella E, Stahl SJ, Gronenborn AM (1993) Science 261:438–446Google Scholar
  25. 25.
    Klein DJ, Johnson PE, Zollars ES, De Guzman RN, Summers MF (2000) Biochemistry 39:1604–1612Google Scholar
  26. 26.
    Chen H-T, Legault P, Glushka J, Omichinski JG, Scott RA (2000) Prot Sci 9:1743–1752Google Scholar
  27. 27.
    Boysen RI, Hearn MTW (2001) J Pep Res 57:19–28Google Scholar
  28. 28.
    Bodanszky M (1993) Peptide Chemistry: A Practical Approach 2 Ed. Springer Berlin Heidelberg New YorkGoogle Scholar
  29. 29.
    Ellman GL (1959) Arch Biochem Biophys 82:70–77PubMedGoogle Scholar
  30. 30.
    Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  31. 31.
    Lombardi A, Marasco D, Maglio O, Di Costanzo L, Nastri F, Pavone V (2000) Proc Nat Acad Sci USA 97:11922–11927Google Scholar
  32. 32.
    Berg JM, Merkle DL (1989) J Am Chem Soc 111:3759–3761Google Scholar
  33. 33.
    Lippens G, Dhalluin C, Wieruszeski JM (1995) J Biomolec NMR 5: 327–331Google Scholar
  34. 34.
    Bax A, Davis DG (1985) J Magnetic Res 65:355–360Google Scholar
  35. 35.
    Johnson BA, Blevins RA (1994) J Biomol NMR 4:603–614Google Scholar
  36. 36.
    Stanger HE, Gellman SH (1998) J Am Chem Soc 120:4236–4237Google Scholar
  37. 37.
    Blanco F, Ramirez-Alvarado M, Serrano L (1998) Curr Opin Struct Biol 8:107–111Google Scholar
  38. 38.
    Maynard AJ, Sharman GJ, Searle MS (1998) J Am Chem Soc 120: 1996–2007Google Scholar
  39. 39.
    Blasie CA, Berg JM (1997) Biochemistry 36:6218–6222Google Scholar
  40. 40.
    Witkowski RT, Ratnaswamy G, Larkin K, McLendon G, Hattman S (1998) Inorg Chem 37:3326–3330Google Scholar
  41. 41.
    Lane RW, Ibers JA, Frankel RB, Papaefthymiou GC, Holm RH (1977) J Am Chem Soc 99:84–98Google Scholar
  42. 42.
    McMillin DR, Rosenberg RC, Gray HB (1974) Proc Natl Acad Sci USA 71:4760–4762Google Scholar
  43. 43.
    Chang SC, Karambelkar VV, Sommer RD, Rheingold AL, Goldberg DP (2002) Inorg Chem 41:239–248Google Scholar
  44. 44.
    Garmer DR, Krauss M (1993) J Am Chem Soc 115:10247–10257Google Scholar
  45. 45.
    Bertini I, Luchinat C (1994) In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic Chemistry. University Science Books, Sausalito CA, pp 37–106Google Scholar
  46. 46.
    Corwin DT Jr, Gruff ES, Kock SA (1988) Inorg Chim Acta 151:5–6Google Scholar
  47. 47.
    Berg JM, Godwin HA (1997) Annu Rev Biophys Biomol Struct 26:357–371Google Scholar
  48. 48.
    Blasie CA, Berg JM (2002) Biochemistry 41:15068–15073Google Scholar
  49. 49.
    Alexander RS, Kiefer LL, Fierke CA, Christianson DW (1993) Biochemistry 32:1510–1518Google Scholar
  50. 50.
    Qian XQ, Jeon CJ, Yoon HS, Agarwal K, Weiss MA (1993) Nature 365: 277–279Google Scholar
  51. 51.
    Sudol M (1996) Prog Biophys Molec Biol 65:113–132Google Scholar
  52. 52.
    Koepf EK, Petrassi HM, Sudol M, Kelly JW (1999) Prot Sci 8: 841–853Google Scholar
  53. 53.
    Koepf EK, Petrassi HM, Ratnaswamy G, Huff ME, Sudol M, Kelly JW (1999) Biochemistry 38:14338–14351Google Scholar
  54. 54.
    Kaul R, Angeles AR, Jager M, Powers ET, Kelly JW (2001) J Am Chem Soc 123:5206–5212Google Scholar
  55. 55.
    Zeng J, Vallee BL, Kägi JHR (1991) Proc Natl Acad Sci USA 88: 9984–9988Google Scholar
  56. 56.
    Parraga G, Horvath SJ, Eisen A, Taylor WE, Hood L, Young ET, Klevit RE (1988) Science 241:1489–1492Google Scholar
  57. 57.
    Wishart DS, Sykes BD, Richards FM (1991) J Mol Biol 222:311–333Google Scholar
  58. 58.
    Wishart DS, Sykes BD, Richards FM (1992) Biochem 31:1647–1651Google Scholar
  59. 59.
    Lachenmann MJ, Ladbury JE, Dong J, Huang K, Carey P, Weiss MA (2004) BiochemistryGoogle Scholar
  60. 60.
    Mely Y, Cornille F, Fournie-Zaluski MC, Darlix JL, Roques BP, Gerard D (1991) Biopolymers 31:899–906Google Scholar
  61. 61.
    Klemba M, Regan L (1995) Biochemistry 34:10094–10100Google Scholar
  62. 62.
    Freund SMV, Wong KB, Fersht AR (1996) Proc Natl Acad Sci USA 93: 10600–10603Google Scholar
  63. 63.
    Serrano L, Matouschek A, Fersht AR (1992) J Mol Biol 224: 805–818Google Scholar
  64. 64.
    Gu HD, Kim D, Baker D (1997) J Mol Biol 274:588–596Google Scholar
  65. 65.
    Kim CWA, Berg JM (1993) Nature 362:267–270Google Scholar
  66. 66.
    Hutchinson EG, Thornton JM (1994) Prot Sci 3:2207–2216Google Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • Wenpeng Kou
    • 1
  • Harsha S. Kolla
    • 1
  • Alfonso Ortiz-Acevedo
    • 1
  • Donovan C. Haines
    • 1
  • Matthew Junker
    • 2
  • Gregg R. Dieckmann
    • 1
  1. 1.Department of ChemistryThe University of Texas at DallasRichardsonUSA
  2. 2.Department of Molecular and Cell BiologyThe University of Texas at DallasRichardsonUSA

Personalised recommendations