Structure of a [2Fe–2S] ferredoxin from Rhodobacter capsulatus likely involved in Fe–S cluster biogenesis and conformational changes observed upon reduction

  • Germaine Sainz
  • Jean Jakoncic
  • Larry C. Sieker
  • Vivian Stojanoff
  • Nukri Sanishvili
  • Marcel Asso
  • Patrick Bertrand
  • Jean Armengaud
  • Yves Jouanneau
Original Paper


FdVI from Rhodobacter capsulatus is structurally related to a group of [2Fe–2S] ferredoxins involved in iron–sulfur cluster biosynthesis. Comparative genomics suggested that FdVI and orthologs found in α-Proteobacteria are involved in this process. Here, the crystal structure of FdVI has been determined for both the oxidized and the reduced protein. The [2Fe–2S] cluster lies 6 Å below the protein surface in a hydrophobic pocket without access to the solvent. This particular cluster environment might explain why the FdVI midpoint redox potential (−306 mV at pH 8.0) did not show temperature or ionic strength dependence. Besides the four cysteines that bind the cluster, FdVI features an extra cysteine which is located close to the S1 atom of the cluster and is oriented in a position such that its thiol group points towards the solvent. Upon reduction, the general fold of the polypeptide chain was almost unchanged. The [2Fe–2S] cluster underwent a conformational change from a planar to a distorted lozenge. In the vicinity of the cluster, the side chain of Met24 was rotated by 180°, bringing its S atom within hydrogen-bonding distance of the S2 atom of the cluster. The reduced molecule also featured a higher content of bound water molecules, and more extensive hydrogen-bonding networks compared with the oxidized molecule. The unique conformational changes observed in FdVI upon reduction are discussed in the light of structural studies performed on related ferredoxins.


Ferredoxin Crystal structure Iron–sulfur cluster Redox potential Conformational changes 





Anabaena PCC7119 ferredoxin


Electron paramagnetic resonance




Ferredoxin from Escherichia coli


Multiple anomalous dispersion




Root mean square



We thank Christine Meyer for helping in the purification of FdVI. We are indebted to Emile Duée and Eric Fanchon for helpful discussion. Thanks to D. Bourgeois, X. Vernede, R. Morales and J. Fontecilla for helpful advice and for giving us access to the facilities which allowed us to obtain and analyze reduced crystals of FdVI. We wish to thank Valerie Biou, Janet Smith and Andrew Thompson for valuable suggestions and support. Funding for this project was provided by the Centre National de la Recherche Scientifique, the Commissariat à l’Energie Atomique, the European Synchrotron Radiation Facility and the NIGMS under agreement Y1 GM-0080.

Supplementary material

775_2005_69_MOESM1_ESM.pdf (314 kb)
Supplementary material


  1. 1.
    Bruschi M, Guerlesquin F (1988) FEMS Microbiol Rev 54:155–176CrossRefGoogle Scholar
  2. 2.
    Muller JJ, Muller A, Rottmann M, Bernhardt R, Heinemann U (1999) J Mol Biol 294:501–513CrossRefPubMedGoogle Scholar
  3. 3.
    Bernhardt R (1996) Rev Physiol Biochem Pharmacol 127:137–221PubMedCrossRefGoogle Scholar
  4. 4.
    Baldwin JE, Morris GM, Richards WG (1991) Proc R Soc Lond B Biol Sci 245:43–51CrossRefGoogle Scholar
  5. 5.
    Berg A, Gustafsson JA, Ingelman-Sundberg M (1976) J Biol Chem 251:2831–2838PubMedGoogle Scholar
  6. 6.
    Zheng L, Cash VL, Flint DH, Dean DR (1998) J Biol Chem 273:13264–13272CrossRefPubMedGoogle Scholar
  7. 7.
    Takahashi Y, Nakamura M (1999) J. Biochem (Tokyo) 126:917–926Google Scholar
  8. 8.
    Lange H, Kaut A, Kispal G, Lill R (2000) Proc Natl Acad Sci USA 97:1050–1055PubMedCrossRefGoogle Scholar
  9. 9.
    Grinberg AV, Hannemann F, Schiffler B, Muller J, Heinemann U, Bernhardt R (2000) Proteins Struct Funct Genet 40:590–612CrossRefPubMedGoogle Scholar
  10. 10.
    Muller A, Muller JJ, Muller YA, Uhlmann H, Bernhardt R, Heinemann U (1998) Structure 6:269–280CrossRefPubMedGoogle Scholar
  11. 11.
    Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Biochemistry 40:11007–11012CrossRefPubMedGoogle Scholar
  12. 12.
    Sevrioukova IF, Garcia C, Li HY, Bhaskar B, Poulos TL (2003) J Mol Biol 333:377–392CrossRefPubMedGoogle Scholar
  13. 13.
    Armengaud J, Meyer C, Jouanneau Y (1994) Biochem J 300:413–418PubMedGoogle Scholar
  14. 14.
    Grabau C, Schatt E, Jouanneau Y, Vignais PM (1991) J Biol Chem 266:3294–3299PubMedGoogle Scholar
  15. 15.
    Naud I, Vinçon M, Garin J, Gaillard J, Forest E, Jouanneau Y (1994) Eur J Biochem 222:933–939CrossRefPubMedGoogle Scholar
  16. 16.
    Armengaud J, Meyer C, Jouanneau Y (1997) J Bacteriol 179:3304–3309PubMedGoogle Scholar
  17. 17.
    Armengaud J, Sainz G, Jouanneau Y, Sieker LC (2001) Acta Crystallogr D 57:301–303CrossRefPubMedGoogle Scholar
  18. 18.
    Bourgeois D, Vernede X, Adam V, Fioravanti E, Ursby T (2002) J Appl Crystallogr 35:319–326CrossRefGoogle Scholar
  19. 19.
    Bertrand P, Gayda JP (1979) Biochim Biophys Acta 579:107–121PubMedGoogle Scholar
  20. 20.
    Tanigushi VT, Sailasuta-Scott N, Anson FC, Gray HB (1980) Pure Appl Chem 52:2275–2281CrossRefGoogle Scholar
  21. 21.
    Evans G, Pettifer RF (2001) J Appl Crystallogr 34:82–86CrossRefGoogle Scholar
  22. 22.
    Westbrook EM, Naday I (1997) Methods Enzymol 276:244–268PubMedGoogle Scholar
  23. 23.
    Otwinowski Z (1993) In: Bailey S (ed) Data collection and processing, Proceedings of the CCP4. SERC Laboratory, Daresbury, pp 56–62Google Scholar
  24. 24.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326Google Scholar
  25. 25.
    Brünger AT et al (1998) Acta Crystallogr D 54:905–921CrossRefPubMedGoogle Scholar
  26. 26.
    Perrakis A, Morris R, Lamzin VS (1999) Nat Struct Biol 6:458–463CrossRefPubMedGoogle Scholar
  27. 27.
    Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A 47:110–119CrossRefPubMedGoogle Scholar
  28. 28.
    Navaza J (1994) Acta Crystallogr A 50:157–163CrossRefGoogle Scholar
  29. 29.
    CCP4 (1994) Acta Crystallogr D 50:760–763CrossRefGoogle Scholar
  30. 30.
    von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) Nucleic Acids Res 31:258–261CrossRefPubMedGoogle Scholar
  31. 31.
    Ta DT, Vickery LE (1992) J Biol Chem 267:11120–11125PubMedGoogle Scholar
  32. 32.
    Jung YS, Gao-Sheridan HS, Christiansen J, Dean DR, Burgess BK (1999) J Biol Chem 274:32402–32410CrossRefPubMedGoogle Scholar
  33. 33.
    Hase T, Mizutani S, Mukohata Y (1991) Plant Physiol 97:1395–1401PubMedGoogle Scholar
  34. 34.
    Battistuzzi G, D’Onofrio M, Borsari M, Sola M, Macedo AL, Moura JJ, Rodrigues P (2000) J Biol Inorg Chem 5:748–760CrossRefPubMedGoogle Scholar
  35. 35.
    Huang YY, Kimura T (1983) Anal Biochem 133:385–393CrossRefPubMedGoogle Scholar
  36. 36.
    Burova TV, Beckert V, Uhlmann H, Ristau O, Bernhardt R, Pfeil W (1996) Protein Sci 5:1890–1897PubMedGoogle Scholar
  37. 37.
    Coghlan VM, Vickery LE (1991) J Biol Chem 266:18606–18612PubMedGoogle Scholar
  38. 38.
    Holden M, Mayhew M, Bunk D, Roitberg A, Vilker V (1997) J Biol Chem 272:21720–21725CrossRefPubMedGoogle Scholar
  39. 39.
    Sevrioukova IF, Hazzard JT, Tollin G, Poulos TL (2001) Biochemistry 40:10592–10600CrossRefPubMedGoogle Scholar
  40. 40.
    Morales R, Charon MH, Hudry-Clergeon G, Petillot Y, Norager S, Medina M, Frey M (1999) Biochemistry 38:15764–15773CrossRefPubMedGoogle Scholar
  41. 41.
    Sevrioukova IF (2005) J Mol Biol 347:607–621CrossRefPubMedGoogle Scholar
  42. 42.
    Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C, Frey M (2000) EMBO Rep 1:271–276CrossRefPubMedGoogle Scholar
  43. 43.
    Beilke D, Weiss R, Lohr F, Pristovsek P, Hannemann F, Bernhardt R, Ruterjans H (2002) Biochemistry 41:7969–7978CrossRefPubMedGoogle Scholar
  44. 44.
    Kostic M, Bernhardt R, Pochapsky TC (2003) Biochemistry 42:8171–8182CrossRefPubMedGoogle Scholar
  45. 45.
    Esnouf RM (1997) J Mol Graph 15:133–138Google Scholar
  46. 46.
    Merritt EA, Murphy ME (1994) Acta Crystallogr D 50:869–873CrossRefPubMedGoogle Scholar
  47. 47.
    Nicholls A, Sharp KA, Honig B (1991) Proteins Struct Funct Genet 11:281–296CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2006

Authors and Affiliations

  • Germaine Sainz
    • 1
  • Jean Jakoncic
    • 1
    • 2
  • Larry C. Sieker
    • 3
  • Vivian Stojanoff
    • 1
    • 2
  • Nukri Sanishvili
    • 4
  • Marcel Asso
    • 5
  • Patrick Bertrand
    • 5
  • Jean Armengaud
    • 6
    • 7
  • Yves Jouanneau
    • 6
  1. 1.European Synchrotron Radiation FacilityGrenoble Cedex 9France
  2. 2.Brookhaven National LaboratoryNational Synchrotron Light SourceUptonUSA
  3. 3.Department of Biological StructureUniversity of WashingtonSeattleUSA
  4. 4.Structural Biology Center/Midwest Center for Structural GenomicsArgonne National Laboratory ArgonneUSA
  5. 5.Laboratoire de Bioénergétique et Ingénierie des ProtéinesUPR 9036 CNRSMarseille Cedex 20France
  6. 6.Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, CNRS UMR 5092, Département Réponse et Dynamique CellulairesCEA-GrenobleGrenoble Cedex 9France
  7. 7.CEA-Valrho, DSV-DIEP-SBTNBagnols-sur-Cèze CedexFrance

Personalised recommendations